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Previous studies have shown that the visual system is
able to estimate properties such as area, numerosity,
and mean size efficiently and accurately. In the current
study, we investigated whether our percepts of each of
them could be based on ratios of the other two of these
three properties. In each trial, observers viewed a
display containing various quantities of filled circles and
judged whether the magnitude of a property of the
display, such as summed area, numerosity, or average
size of the circles, was greater or less than a
corresponding probe display. We found that mean size
judgments were more accurate and precise compared to
the other judgments. We then predicted observers’
performances for each task using the measured
performance for the other judgments. The results
showed that the other properties predicted perceived
summed area, but not perceived mean size and
numerosity. Together, our results suggest that the visual
system does not use ratios to compute mean size and
numerosity.

Introduction

Ensemble perception has attracted much research
interest because it can provide an efficient summary of
a complex scene (Alvarez, 2011; Ariely, 2001; Chong &
Treisman, 2003). A typical scene contains highly
structured and redundant information (Kersten, 1987).
One way of utilizing this structure and redundancy is to

represent various features and objects in a scene as a
statistical summary, such as mean size. Thus, it is
important to study how the visual system computes the
statistical properties of a scene.

One step toward understanding the mechanism of
computing the statistical properties of a scene is to
investigate whether the visual system computes a
specific statistical property based on other properties.
For example, people could derive the mean size of
visual arrays using other properties such as summed
area and numerosity. If the visual system represents
summed area and numerosity, it can simply take the
ratio of summed area to numerosity to derive mean
size. It would be inefficient for the visual system to
represent all three properties if one of them can be
computed based on the other two properties.

The visual system represents not only absolute
quantity but also ratios of quantities (Jacob, Vallentin,
& Nieder, 2012). Single neurons in the prefrontal and
parietal cortices are tuned to preferred proportions
(Vallentin & Nieder, 2008, 2010). Similar results were
found in human frontoparietal regions using an fMRI
adaptation paradigm (Jacob & Nieder, 2009b). Based
on these neurophysiological findings, Jacob et al. (2012)
suggested that the visual system is able to make analog
representations of magnitude ratios. Since the visual
system is capable of representing magnitude ratios, it is
possible that the visual system computes mean size
based on the ratio of summed area to numerosity.
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However, there has not been an empirical investigation
of whether the visual system uses this ratio.

On the other hand, direct computation of mean size
of visual displays might be more efficient and
advantageous than derivation of the ratio of summed
area to numerosity when the internal representations of
the summed area are highly correlated with that of
numerosity. It is inefficient to represent two correlated
properties separately. In a visual scene, summed area is
often correlated with numerosity because the total size
of objects dramatically increases as the number of
objects increases. Moreover, recent studies have sug-
gested that there are, indeed, interrelationships between
the representation of numerosity and other quantities.
For example, in a meta-analysis, Walsh (2003) pro-
posed a ‘‘generalized magnitude system’’ that processes
time, space, and numerosity based on behavioral
evidence (Brown, 1997; Casini & Macar, 1997; De-
haene, Dehaene-Lambertz, & Cohen, 1998) and the
following neuroimaging studies. Neuroimaging studies
have shown that the same posterior parietal area is
responsive to the three properties (time: Leon &
Shadlen, 2003; Onoe, Komori, Onoe, Takechi, Tsuka-
da, & Watanabe, 2001; space: Stein, 1989; numerosity:
Sawamura, Shima, & Tanji, 2002). In addition,
activated regions in the intraparietal sulcus were
overlapped during comparison tasks involving size,
luminance, and numerosity (Pinel, Piazza, Bihan, &
Dehaene, 2004).

Given the high correlation between numerosity and
size, it is inefficient to represent numerosity and size
separately. The visual system may derive numerosity
from the ratio of summed area to mean size. Likewise,
it may derive summed area from multiplying mean size
by numerosity. Whether the visual system has a
separate mechanism of computing numerosity has been
highly debated (Burr & Ross, 2008a; Dakin, Tibber,
Greenwood, Kingdom, & Morgan, 2011; Durgin,
2008). Because observers adapted to the number of
items in a visual display, Burr and Ross (2008a)
suggested that the visual system senses number directly.
However, Durgin (2008) showed that number adapta-
tion was determined by density, rather than numer-
osity. Dakin et al. (2011) also suggested that both
number and density perception are based on a common
metric, which is the ratio of responses tuned to low and
high spatial frequencies. Therefore, it is important to
investigate that the computation of visual magnitudes
is based on the ratio of other properties.

In the present study, we investigated whether people
perceive visual properties using the interrelationships
among three specific properties: summed area, numer-
osity, and mean size. We first measured observers’
ability to estimate these three properties using three
different tasks: observers estimated the sum of stimulus
sizes, numerosity of the stimuli, and their mean size. In

each trial, observers viewed standard displays contain-
ing various quantities of filled circles and judged
whether the magnitude of the standard display was
greater or less than that of a subsequent test display.
We then constructed psychometric functions describing
the observers’ performances for each task. Using these
psychometric functions, we computed the point of
subjective equality (PSE) to compare bias of each
judgment and just-noticeable difference (JND) to
compare sensitivity of each judgment. If one judgment
has less bias and higher sensitivity than the other
judgments, this judgment is not likely to be derived
from the other judgments.

In the next step, we tested whether our percepts of
each of mean size, summed size, or numerosity could be
based on ratios of the other two of these three
properties using the following modeling approach. For
the mean size task, we first considered the mean size
task’s psychometric function as a performance-limiting
noise distribution by converting a measured psycho-
metric function (cumulative Gaussian) into a Gaussian
distribution. We made performance-limiting noise
distributions for the summed area and numerosity tasks
separately using the same method. Then, we randomly
sampled one value from the performance-limiting noise
distributions from the summed area task and one value
from the performance-limiting noise distributions from
the numerosity task. We then took the ratio of the two
values and repeated this process 1,000,000 times to
make bootstrapped distributions of mean size percep-
tion. Next, using the bootstrapped distributions, we
predicted the mean size task’s performance. Similarly,
the ability to estimate the summed area was predicted
by multiplying mean size by numerosity and the ability
to estimate numerosity was predicted by taking the
ratio of summed area to mean size. If the ability to
estimate one property is predicted by the other
properties, predicted values should be positively
correlated with measured values. Ideally, the slope of a
regression line between the measured and predicted
values should be one.

To preview the results, we found that mean size
discrimination is more precise than summed area and
numerosity discrimination. The predicted results
showed that summed area was explained well by the
other two properties, but both mean size and numer-
osity were not successfully described by the other two
properties. Because mean size perception was more
precise than summed area and numerosity and was not
predicted by the ratio of summed area to numerosity,
we suggest that the visual system does not perceive
mean size based on the ratio of summed area to
numerosity. Moreover, the visual system does not
perceive numerosity based on the ratio of summed area
to mean size because numerosity was not predicted by
the ratio of summed area to mean size.
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Methods

Participants

There were four participants, including the first
author, in this study. All had normal or corrected-to-
normal visual acuity and were naı̈ve to the purpose of
the experiment, except the first author. All aspects of
the study were carried out in accordance with the
regulations of the Institutional Review Board of Yonsei
University.

Apparatus and stimuli

Stimuli were presented on a 21-in. HP P1230 CRT
monitor with a 1600 3 1200 pixel resolution using a
refresh rate of 85 Hz. A chin and forehead rest was used
to stabilize the head of each participant. The viewing
distance was 90 cm, and thus, a pixel was 0.0168.
Stimuli were generated using MATLAB and the
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

As shown in Figure 1, there were standard, mask,
and test displays. The standard display contained a set
of black (0.01 cd/m2) filled circles on a gray (14.43 cd/

m2) background. The diameter of each circle, ranging
from 0.678 to 1.688, was randomly selected. As
Teghtsoonian (1965) found that the perceived size of a
circle was related to its area by a power function with
an exponent of 0.76, we generated circle sizes that were
spaced equally on this scale. We converted each circle
size and calculated the summed area and mean size on
the scale (Chong & Treisman, 2003; Teghtsoonian,
1965). We randomly selected a set of circles repeatedly
until the mean size of the set matched the mean
predetermined for each condition. Because this proce-
dure required time to generate each display, we
pregenerated the sizes of each circle for all trials within
a session. We used a mask, a phase-scrambled version
of each display, to control the duration of a display
(Ganis & Kutas, 2003). The test display contained the
predetermined number of circles for numerosity judg-
ments, but only one circle for both area and mean size
judgments.

Design

There were four within-participant variables. The
first was the type of task. We had three tasks: judging
the sum of circle sizes, the numerosity of circles, and the
mean size of circles. The remaining variables—density,
numerosity, and mean size—were used to generate
different displays. Each variable had three levels.
Specifically, the sizes of the display fields (density) were
19.028 3 13.228, 22.068 3 16.568, and 25.68 3 19.28. The
width and height of the display field differed by 16%
between the adjacent levels. For numerosity, the
numbers of circles were set at 10, 20, and 40 to create
enough room for generating test stimuli. The mean
sizes were 1.028, 1.158, and 1.318 and the difference
between the adjacent levels was 16% on the psycho-
logical scale (Teghtsoonian, 1965). In sum, participants
performed three tasks, each of which had three
different manipulations (area, numerosity, and mean
size), each varying in three levels. This design generated
3 tasks3 3 levels of density3 3 levels of numerosity3 3
mean sizes, for a total of 81 conditions.

Participants judged whether the perceived magnitude
observed for the test display was greater or less than
that for the standard display. The standard display for
each task had 27 different levels (3 different densities3
3 levels of numerosity 3 3 different mean sizes). The
perceived magnitude compared in the test displays
differed across five different levels: 8% smaller and
larger than the standard, 16% smaller and larger than
the standard, and equal to the standard. Note that we
rounded numbers in the case of numerosity variation.
The total number of trials was 24,300 (81 conditions 3
5 test displays 3 60 repetitions), which were divided
into 54 blocks of 450 trials each. Both the trial sequence

Figure 1. Stimuli and procedure for the experiment. For each

task, observers were instructed to judge the perceived

magnitude of a test display compared to a standard display.
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in a block and the sequence of blocks were randomly
determined. Before starting each session, participants
performed 30 practice trials.

Procedure

Each trial was self-paced and started with a fixation
point. When participants pressed the space bar, the
standard display was presented for 494 ms. Immedi-
ately after the presentation of the standard display, the
mask was presented for 247 ms, followed by the test
display until a response was recorded. Participants
judged whether, compared to the standard display, the
perceived magnitude of the test stimuli was larger or
smaller in the summed area and mean size tasks, and
whether it was more or less numerous in the numerosity
task. When they thought that the test display had a
smaller magnitude, they pressed the 1 key. Otherwise,
they pressed the 2 key. After the response, they moved
on to the next trial by pressing the space bar. A 1-min
break was given after 150 trials. Feedback was not
provided, except during practice, to prevent bias
(Bauer, 2009).

Results

Estimation biases: Point of subjective equality
analyses

Psychometric functions were obtained for each
condition and each observer by fitting cumulative
Gaussian functions to the data. The functions of a
representative observer are shown in Figure 2. To
investigate the effect of three independent variables
(density, number, and mean size of the displays) on
each task separately, we collapsed the other two
variables in Figure 2, which presents the psychometric
functions dependent on each independent variable. We
first analyzed the average point of subjective equality
(PSE) for each task to determine the ability to estimate
each magnitude. One-sample t tests showed that the
PSE of the summed area (�3.98%) and mean size
(1.46%) tasks did not differ significantly from zero, t(3)
¼�1.687, p ¼ 0.190; t(3)¼ 1.982, and p¼ 0.142,
respectively, suggesting that neither estimation was
biased. However, the PSE of the numerosity task
(�5.5%) was significantly less than zero, t(3)¼�3.931, p
¼ 0.029, suggesting that the observers underestimated
numerosity. This underestimation may have been due
to size variation in the standard display and uncorre-
lated sizes in the test display; such variation did not
exist in previous studies (Allik & Tuulmets, 1991;
Burgess & Barlow, 1983; Ross, 2003). Numerosity

estimations in previous studies were conducted with
uniform dot size in both the standard and test displays.

Figure 3 shows the PSEs of the three tasks depending
on the three display types. First, the effect of density
did not significantly influence any of the three tasks,
F(2, 6) ¼ 0.386, p ¼ 0.696 for summed area; F(2, 6) ¼
0.397, p ¼ 0.689 for numerosity; F(2, 6) ¼ 2.140, p ¼
0.199 for mean size; these results are consistent with
previous studies (Chong & Treisman, 2005; Burr &
Ross, 2008a, 2008b). Second, regarding the effect of
numerosity, the PSEs of the area task (the dotted line
with squares) decreased significantly as the numerosity
of the display increased, F(2, 6) ¼ 14.510, p ¼ 0.005,
indicating that the summed area was underestimated as
the numerosity of the display increased. Likewise, the
PSE of the numerosity task (the line with triangles)
decreased as the numerosity of the display increased,
although the decrease was not significant, F(2, 6) ¼
4.190, p¼ 0.073).1 In contrast, the PSE of the mean size
task (the dotted line with filled circles) significantly
increased as the numerosity of the display increased,
F(2, 6) ¼ 15.531, p¼ 0.004. Observers overestimated
mean sizes as the numerosity of the display increased.
More interestingly, while mean sizes were overestimat-
ed, perceived magnitudes of both summed area and
numerosity were underestimated. A similar pattern was
observed in the mean size variation. The PSEs of the
summed area and mean size task significantly decreased
as the mean size increased, F(2, 6) ¼ 16.473, p ¼ 0.004
for summed area; F(2, 6)¼ 19.090, p¼ 0.003 for mean
size, indicating that the summed area was underesti-
mated and that the mean size became veridical.
However, the PSEs of the numerosity task increased as
the mean size increased, F(2, 6) ¼ 5.174, p¼ 0.049,
indicating overestimations of numerosity. Therefore,
the mean size was underestimated when numerosity
was overestimated, and vice versa.

Interrelationship among the three magnitudes:
Correlation analyses

To investigate the interrelationships among the
estimations of the three magnitudes, we conducted a
correlation analysis. In order to determine the correla-
tions among the various estimations, we converted
presented magnitudes into perceived magnitudes by
multiplying the PSEs by the presented magnitudes. Since
the PSEs that we measured were defined as the
magnitude of difference (%) between the standard and
test displays, the perceived magnitude can be acquired
by multiplying the actual magnitude presented in the
display by the observers’ bias (i.e., PSEs). The correla-
tions between perceived magnitudes showed that there
were statistically significant correlations for all pairs of
magnitudes. Estimations of summed area were positively
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correlated with estimations of both numerosity, mean r
¼ 0.97, t(3)¼ 222.564, p , 0.001, and mean size, mean r
¼ 0.39, t(3)¼ 9.011, p¼ 0.003. Numerosity estimations
also showed a significant positive correlation with mean
size estimations, mean r¼ 0.23, t(3)¼ 7.592, p¼ 0.005.
Thus, all three magnitudes were related to each other,
consistent with the generalized magnitude system
hypothesis (Walsh, 2003).

Estimation sensitivity: Just-noticeable difference
analyses

Figure 4 shows the just-noticeable difference (JND)
for each condition. We first calculated the difference
between the 75% threshold and PSE and then the
difference between the 25% threshold and PSE. We then
defined JND as the average of the two differences. A

Figure 2. Psychometric functions of a representative observer in relation to three different tasks and three independent variables.

Figure 3. The PSEs of each task depending on three independent

variables. Each column indicates different ways of generating

displays, and each task was described as a separate line within

each column.
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smaller JND indicates greater sensitivity of a specific
discrimination. First, we found a main effect of the
tasks, F(2, 6)¼ 11.655, p¼ 0.009. The JND for the
summed area task was significantly larger than that of
the mean size task, F(1, 3)¼ 30.041, p¼ 0.012, and
significantly smaller than that of the numerosity task,
F(1, 3)¼ 17.473, p¼ 0.025, indicating that the ability to
discriminate mean size was better than for discriminat-
ing summed area and numerosity. Second, as in the PSE
analysis, the JNDs for the three tasks were unaffected by
density variation, F(2, 6)¼ 1.341, p¼ 0.330 for summed
area; F(2, 6)¼ 2.375, p¼ 0.174 for numerosity; F(2, 6)¼
0.880, p¼0.462 for mean size. Third, regarding the effect
of numerosity, while the JNDs for the summed area task
were unaffected, F(2, 6)¼ 2.317, p¼ 0.180, the JNDs for
the numerosity task significantly increased as the
numerosity of the display increased, F(2, 6)¼ 13.868, p¼
0.006. In contrast, the JNDs for mean size task
decreased significantly as the numerosity of the display
increased, F(2, 6)¼ 5.463, p¼ 0.045).2 Similar patterns
were found when the mean size varied. The JNDs for the
summed area and mean size tasks significantly decreased
as the mean size increased, F(2, 6)¼ 12.208, p¼0.008 for
summed area; F(2, 6)¼ 34.201, p¼ 0.001 for mean size.
These results indicate that the estimations of summed
area and mean size improve when the mean sizes of the
stimuli become larger. However, the JNDs for the
numerosity task did not depend on mean size variation,
F(2, 6)¼ 1.668, p¼ 0.265.

Percepts of each of the three properties
predicted by the other two properties:
Modeling approach

The analyses of the PSEs and JNDs suggest that the
ability of observers to estimate mean size is more
accurate and precise than their ability to judge summed

area and numerosity. The PSEs of numerosity judg-
ments were negatively biased, whereas those of mean
size judgments did not demonstrate bias. Moreover,
JNDs for mean size judgments were significantly
smaller than those for the other judgments. Thus, it is
unlikely that mean size is derived from the ratio of
summed area to numerosity.

To further test whether mean size is derived from
summed area and numerosity, we compared the
perceived mean size, expressed by the measured
p(greater)—probabilities of responding that a test
display is greater than a standard display—from the
dataset, to the mean size predicted by the other
quantities (see Figure 5). The predicted performance in
the mean size task was computed with a resampling
method. For both the summed area and number tasks,
p(greater) at five test levels were fitted to a cumulative
Gaussian distribution (Figure 5a) so as to estimate the
distribution (ltask,rtask; Figure 5b) of observers’ noisy
percept. A predicted mean size was calculated by two
random values, which was drawn independently from
one from each distribution (Figure 5b for summed area
and Figure 5d for numerosity). The ratio of these (the
value from summed-area distributions divided by one
from numerosity distribution) was used as a predicted
mean size perception (Figure 5f). Repeating this
process 1,000,000 times allowed us to reconstruct a
predicted distribution (Figure 5g) of mean size per-
ception, and p(greater) for the mean size judgment at
five test levels could be predicted with the distribution.

In the same manner, we compared the predicted
numerosity by the other quantities to the perceived
numerosity and the predicted summed area by the
other quantities to the perceived summed area.
Specifically, the ability to estimate the summed area
was predicted by multiplying mean size by numerosity
and the ability to estimate numerosity was predicted by
taking the ratio of summed area to mean size.

Figure 6 shows the measured results against the
predicted results for each task. Three density levels
were collapsed because it did not significantly influence
observers’ PSEs and JNDs. Figure 6a shows (1)
observers’ measured performance in the area task
against (2) predicted performance for the area task
computed by performance of the mean size and
numerosity tasks. There were three levels of numer-
osity, three levels of mean size, and five levels of
comparison stimuli for each observer. Thus, each graph
in Figure 6 contains 180 (3 3 3 3 5 3 4) data points. If
observers inferred the mean size of stimuli from the
ratio of total area to numerosity, the slope of the
regression should be close to 1 (predicted performance
¼measured performance). In contrast, if observers
perceived the mean size of stimuli directly, the slope
would not necessarily be 1. In the area task, the slope of
the regressed line was 1.145 (Figure 6a). To quantita-

Figure 4. The JNDs for each task depending on three

independent variables. Each column indicates different ways of

generating displays, and each task was described as a separate

line within each column.
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Figure 5. Graphical description of the quantitative analysis of performance-limiting noise. The units on the x-axis were transformed

such that 0% difference between the standard and test displays became 1 to prevent dividing by 0.

Figure 6. Measured versus predicted performance for each task. Green line indicates the slope of the reduced model and red line

indicates the slope of the full model.
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tively evaluate whether the slope was significantly
different from 1, we compared the goodness-of-fit for
the two regression models: the full model with a free
slope parameter and the reduced model with the fixed
slope parameter of 1. An F-test for nested models was
used for statistical comparison (Wannacott & Wanna-
cott, 1981). For the two models with kfull and kreduced
parameters, the F statistic is defined as

Fðdf1; df2Þ ¼
ðr2

full � r2
reducedÞ=df1

ð1� r2
fullÞ=df2

ð1Þ

where df1¼ kfull� kreduced, and df2¼N� kfull; N is the
number of data points. For the area task, the slope was
not significantly different from 1, F(1, 178)¼ 0.695, p¼
0.406 (Figure 6a), suggesting that performance of the
area task was well explained by those of the mean size
and numerosity tasks. For the numerosity task, the
slope (0.808) of the full model was significantly
different from 1, F(1, 178)¼ 18.869, p , 0.001 (Figure
6b), suggesting that the numerosity task was not
predicted well by the mean size and area tasks. For the
mean size task, the slope (1.353) of the full model was
significantly different from 1, F(1, 178)¼4.971, p¼0.03
(Figure 6c). These results suggest that performance in
the mean size task was not predicted by the ratio of
summed area and numerosity.

It should be noted that, in Figure 6c for the mean
size task, some measured p(greater) were widely spread
from 0 to 1, whereas corresponding predicted p(greater)
were centered around 0.5. These occurred only when
observers with significantly negative PSEs (Figure 3)
and larger numerosity JNDs (Figure 4) judged mean
sizes of 20 or 40 items. Those observers often extremely
underestimated the numerosity of a display. If visual
magnitudes (mean size, numerosity, and summed area)
are perceived separately, perceived mean size should
not be affected by such underestimation of numerosity.
In contrast, if mean size was derived from the other
magnitudes, a few extreme underestimations would
yield large variation of mean size percept and, thus,
lead observers to have very low discriminability of
mean sizes. Our analysis shows that observers’ actual
performance was different from the prediction of the
ratio model (data points aligned on the horizontal
center in Figure 6c). In sum, the modeling results
suggest that observers perceived the summed area using
the other properties, but not numerosity and mean size.

Discussion

We investigated whether the visual system computes
various magnitudes of a visual display based on other
magnitudes. We found that the ability of observers to
estimate mean size was better than their ability to

estimate both summed area and numerosity. Specifi-
cally, mean size judgments did not demonstrate any
bias, and had more sensitive discrimination thresholds
than the others. The quantitative analysis of the
performance-limiting noise showed that perceived
summed area was predicted well by the other percep-
tual quantities, whereas both perceived mean size and
numerosity were not predicted by the other perceptual
quantities. Thus, perceived summed area is likely
derived from multiplying perceived numerosity by
perceived mean size. However, perceived numerosity is
not likely to be derived from the ratio of perceived
summed area to perceived mean size and perceived
mean size is not likely to be derived from the ratio of
perceived summed area to perceived numerosity.

Representing mean size is advantageous because the
noise inherent in individual representations can be
canceled out with the representation of mean size
(Alvarez, 2011). We found that mean size discrimina-
tion thresholds became lower as the number of items
increased. This is consistent with the prediction of a
simple pooling model (Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001), given that the JNDs
(8.3%, 8.1%, and 7.6%) in our study decreased
significantly with increasing set size, almost propor-
tionally to the square root of the number of elements.
Allik et al. (2013) also found similar results, when the
set size of 1 was not included in their analyses.

Our results also suggest that the visual system uses a
distinct mechanism to compute numerosity, consistent
with previous studies (Anobile, Cicchini, & Burr, 2014;
Burr & Ross, 2008a; Liu, Zhang, Li, Zhao, & Tang,
2015; Liu, Zhang, Zhao, Liu, & Li, 2013; Ross & Burr,
2010). If the visual system computes and represents
both mean size and numerosity, it does not necessarily
have to represent summed area separately. Our results
support this claim by showing that perceived summed
area was predicted by multiplying perceived mean size
by perceived numerosity. However, we should ac-
knowledge that this evidence is indirect and the exact
mechanism of computing numerosity has not been
provided (Raphael & Morgan, in press). Indeed, many
studies have suggested that perceived numerosity is
based on the density of a display (Dakin et al., 2011;
Durgin, 1995, 2008). When the size of a to-be-counted
object is relatively small, the density of objects may
determine the perceived numerosity of a display
because the entire display of objects can be easily
integrated into a texture. Previous studies (Dakin et al.,
2011: 0.068; Durgin, 1995: 0.048; Durgin, 2008: 0.048)
that have found the effect of density on perceived
numerosity had indeed smaller sizes than other studies
that have found no effect (Burr & Ross, 2008a: 0.38;
Ross & Burr, 2010: 0.248). Consistent with this
explanation, we found no effect of density on perceived
numerosity and our sizes (larger than 0.678) were
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relatively larger than the previous studies. Thus, the
exact mechanism of perceived numerosity can vary
depending on the sizes of to-be-counted objects.

Because the visual world overwhelms us with a
tremendous amount of redundant information (Ker-
sten, 1987), the visual system reduces the redundancy
using an efficient code of summary representation
(Chandler & Field, 2007; Field, 1989). Thus, it is not
efficient to represent all visual quantities, given the high
correlation among them (Walsh, 2003). Consistent with
this claim, our results suggest that the visual system
computes summed area based on the multiplication of
mean size and numerosity. Given high correlation (r¼
0.97) between perceived summed area and perceived
numerosity in our study, it is not efficient to represent
both summed area and numerosity. Rather, the visual
system should represent one property and use it to infer
the other property. Our results suggest that the visual
system represents numerosity and use it to infer
summed area. If this is the case, observers should have
difficulty in judging summed area when the number of
items in a display does not covary with summed area.
Indeed, incongruent numerosity interfered with judg-
ments of summed area and incongruent summed area
interfered with judgments of numerosity (Hurewitz,
Gelman, & Schnitzer, 2006). Halberda, Sires, and
Feigenson (2006) also found that errors of number
estimation significantly increased when total area of to-
be-counted objects did not covary with the number of
objects. These results suggest that summed area and
numerosity rely on a common metric.

Different magnitudes help one another to form a
better representation in a given situation (Jacob et al.,
2012). Jacob et al. (2012) proposed that the analog
codes for the numerator and denominator and the
representation of their proportions complement each
other. Moreover, several previous studies (Ischebeck,
Schocke, & Delazer, 2009; Jacob & Nieder, 2009a;
2009b) have suggested that proportions are represented
in the intraparietal sulcus, the region of the brain
commonly activated by various magnitude estimations
(Pinel et al., 2004). Thus, it is easier for the visual
system to utilize various magnitudes to form a better
representation depending on a given context. Given the
highly correlated context of stimuli between summed
area and numerosity in our displays, the visual system
is likely to utilize mean size and numerosity to infer
summed area.

In summary, we investigated whether the visual
system derives perceived magnitudes of visual proper-
ties (summed area, numerosity, and mean size) using
other perceptual quantities. Our results showed that
mean size discrimination was more precise than the
other types of discrimination and that mean size
judgments demonstrated less bias. In addition, we
found that perceived summed area was predicted well

by the other properties, whereas perceived mean size
and numerosity were not predicted by the other
properties. Thus, the visual system does not derive both
mean size and numerosity from the other perceptual
quantities; it might derive summed area from the other
perceptual quantities.

Keywords: perceived magnitude, ensemble percep-
tion, area, numerosity, mean size

Acknowledgments

This work was supported by a grant from the
National Research Foundation of Korea (NRF)
funded by the Korean government (MEST, No. 2011-
0025005). For helpful comments and discussion about
this manuscript, we thank Eunsam Shin.

Commercial relationships: none.
Corresponding author: Sang Chul Chong.
Email: scchong@yonsei.ac.kr.
Address: Department of Psychology, Yonsei Universi-
ty, Seodaemun-gu, Seoul, Korea.

Footnotes

1 Note that the PSE in the condition with 10 stimuli
was significantly larger than that in the condition with
20, t(3)¼ 5.907, p ¼ 0.010, whereas it did not differ
between the conditions with 20 and 40 stimuli, t(3) ¼
�0.423, p¼ 0.701.

2 Allik, Toom, Raidvee, Averin, and Kreegipuu
(2013) did not find this trend. We think that this
discrepancy is due to not considering averaging noise in
their study. In their study, JNDs mostly increased from
the set size of 1 to the set size of 2, indicating that
averaging noise was involved. In fact, when we
removed the set size of 1 and reanalyzed their data, the
effect of set size became significant, consistent with our
results.
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