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The role of attention has been suggested as selecting relevant information 
to the current objective, thereby enabling the visual system to overcome its 
limited capacity. On the other hand, there has not been a consensus on the 
role of rivalry suppression, where one of two different stimuli presented to 
different eyes becomes invisible. In the current paper, we propose that rivalry 
suppression serves the same goal as attention. Specifically, we argue that 
rivalry suppression helps the visual system to carry potentially necessary 
information without conscious effort and reduce processing loads. In this paper, 
we elaborate on several important parallels between attention and suppression. 
First, attended and suppressed information can be considered as indicating 
the opposite sides of consciousness. Second, unattended information can be 
invisible much like suppressed information. Third, the neural mechanisms 
underlying both attention and rivalry suppression have been suggested to 
be located in the same area, the frontal-parietal cortex. Fourth, the effects of 
attention and suppression are manifested more in higher visual processing 
areas and their effect sizes are similar. Finally, attention can bring suppressed 
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information back to the conscious level, if necessary. We conclude that both 
attention and rivalry suppression reduce the burden on the visual system but in 
contrasting ways, one selecting only relevant information to the current goal 
and the other carrying information without conscious effort.
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Introduction

Our visual world is filled with events and objects that are constantly 
changing. Although phenomenological perception of a scene we experience 
is often vivid and seamless, our visual system often fails to notice what 
changes happened (Rensink, 2002; Simons & Ambinder, 2005). Likewise, 
the representation of a visual scene is sparse (Intraub, 1997) as evidenced by 
poor transsaccadic memory (Irwin, 1991), and visual working memory can 
store up to only four objects (Cowan, 2001; Luck & Vogel; 1997).

Such limited capacity forces the visual system to develop strategies to 
achieve an economical representation of a visual scene, and attention has 
been considered as one of the most prominent processes traditionally. 
Attention only selects relevant information among multiple visual stimuli 
to meet one’s current objective. In this paper, we suggest that suppression 
serves the same goal as attention, to achieve an economical representation. 
We define suppression as placing visual stimuli outside of awareness despite 
their physical presence, resulting in an experience akin to actual physical 
absence of these stimuli. Suppression differs from complete removal of 
the stimuli, however, because suppressed stimuli—although invisible—
still can influence later processing in various ways (Merikle, Smilek, & 
Eastwood, 2001). In this paper, we focus on rivalry suppression where 
one of two different stimuli presented to different eyes becomes invisible. 
Rivalry suppression differs from attentional suppression because attention 
can both increase and decrease the effectiveness of rivalry suppression (Shin 
et al., 2009; Jung & Chong, 2014). Suppressing stimuli may be a means of 
reducing the mental effort required for conscious processing (Kahneman, 
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1973).1 Bolstering this idea, the visual system appears to store a vast amount 
of information without the observer’s awareness (Jiang, Song, & Rigas, 
2005), and thus it saves mental effort compared to conscious storing of 
these information. In addition, suppression may reduce processing demands 
by decreasing the strength of stimuli (Blake, Tadin, Sobel, Raissian, & 
Chong, 2006).

We propose that suppression, much like attention, plays an important role 
in achieving an efficient representation of a complex scene. While attention 
helps the visual system to achieve efficient processing by filtering out 
irrelevant information, suppression reaches the same goal by maintaining 
possibly necessary information without conscious effort and high 
processing demands. 

Despite the notion of attention and suppression having a common 
computational mechanism (Ling & Blake, 2012), one reason why these 
two processes have not been considered as serving a common purpose 
may be due to different perspectives in the two fields. The functional role 
of attention, which William James (1890) has defined as taking possession 
of one among multiple objects, has been considered as the selection of 
only the information that is relevant to a current goal. One prominent 
attention model, the biased competition model (Desimone & Duncan, 1995; 
Reynolds, Chelazzi, & Desimone, 1999), argues that attention resolves the 
competition that exists among multiple objects—from which, for further 
processing, the visual system must select only a proportion of —in a limited 
visual space. Where this selection occurs and how it helps the visual system 
to cope with complex environments have been the major questions in the 
field (Broadbent, 1982 vs. Deutsch & Deutsch, 1963).

On the other hand, studies of suppression have not yet fully agreed 
on its purpose. For example, the role of binocular rivalry suppression is 
often suggested as resolving seemingly conflicting percepts (Blake & 
Logothetis, 2002). Another suggested role of rivalry suppression is helping 

1 Despite additional efforts needed for conscious processing, conscious processing 
is more advantageous in some area. For example, conscious processing can be more 
flexible than unconscious processing (i.e., it can utilize a strategy during a task, 
Cheesman & Merikle, 1986).
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one to maintain focus by placing blurred (out-of-focus) images outside of 
awareness (Arnold, Grove, & Wallis, 2007; Norman, Norman, & Bilotta; 
2000). The suggested roles of suppression in other phenomena are even 
more diverse (see Box 1). No one, however, has yet interpreted suppression 
as a process to overcome our limited visual capacity, as attention has been 
understood. Among several other phenomena, we focus on suppression due 
to binocular rivalry in this paper (Kim & Blake, 2005). In rivalry suppression, 
a dominant stimulus suppresses another stimulus presented to the other 
eye, making it invisible (Blake, 1989). Rivalry does not require additional 
stimuli or physical alterations to the stimuli to change their visibility, unlike 
other types of suppression (Kim & Blake, 2005).

Box 1. Proposed roles of suppression

The proposed roles of suppression vary greatly depending on the field of study. 
There has been no consensus in merging the diverse functions of suppression 
into a broader general function.

Types Roles

Binocular 
rivalry 
suppression

Resolving conflicting percepts (Hohwy, Roepstorff, & Friston, 
2008; Walker, 1978)
Facilitating visibility of the focused images by suppressing out-
of-focus ones (Arnold, Grove, & Wallis, 2007; Norman et al., 
2000)
Dealing with interocular feature mismatches in the process of 
binocular matching and stereopsis (Blake, 1989)
Resolving monocular occlusion (Shimojo & Nakayama, 1990)

Crowding Resolving the bottleneck in object perception processing (Levi, 
2008; Whitney & Levi, 2011)

Saccadic 
suppression

Preventing disturbing motion perception during saccades (Ross, 
Morrone, Goldberg, & Burr, 2001) 

Ground 
suppression Enhancing the processing of figure (Wong & Weisstein, 1982)

Surround 
suppression

Extracting context-dependent saliency (Cavanaugh, Bair, & 
Movshon, 2002)
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To this day, attention and suppression have been studied separately 
because their effects on visual awareness act in opposite fashion; one 
improves the quality of perception (Carrasco, Ling, & Read, 2004) while 
the other degrades it (Ling & Blake, 2009). Here, we propose a new 
conceptual angle to rivalry suppression, targeting on its function as reducing 
the burden on the visual system. In support of this view, we will review 
various pieces of evidence that show similarities between attention and 
rivalry suppression. We first interpret attention and suppression as being 
related via consciousness. Phenomenally speaking, the effect of attention 
on unattended stimuli appears similar to that of suppression (Mack & 
Rock, 1998; Most, Scholl, Clifford, & Simons, 2005). Moreover, attentional 
selection and rivalry suppression share common neural correlates in terms 
of initiation (Carmel, Walsh, Lavie, & Rees, 2010; Yantis, Schwarzbach, 
Serences, Carlson, Steinmetz, Pekar, & Courtney, 2002), and their effects 
are more pronounced in higher visual areas than in early visual areas 
(Kastner & Ungerleider, 2000; Nguyen, Freeman, & Alais, 2003). Based 
on these similarities, we propose that attention and suppression serve a 
common purpose: reducing the burden on the visual system to cope with a 
complex scene.

Attentionand Suppression as the Two Sides of Consciousness

While the relationship between attention and suppression has not been 
explicitly discussed, the connection of each to consciousness has been 
suggested independently. Attention has often been thought of as a 
gateway to consciousness (Posner, 1994) or a catalyst for verbal access 
to the contents of consciousness (Lamme, 2003). In support of this 
notion, different forms of attention correspond well to different levels of 
consciousness (Cohen, Cavanagh, Chun, & Nakayama, 2012; Marchetti, 
2012, but see also Koch & Tsuchiya, 2007). It has also been suggested that 
consciousness and its counterpart unconsciousness should be investigated 
simultaneously (Crick & Koch, 1998). When suppression is regarded 
as a means of blocking stimuli from reaching consciousness, it reduces 
conscious perception. In contrast, attention enhances conscious perception. 
Therefore, attention and suppression may be linked to be manifestations of 
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changes in consciousness, albeit in an opposite way (Figure 1).
This relationship becomes evident when considering what happens to 

unattended information. Unattended information is subject to attentional 
suppression. Multiple stimuli compete for the limited capacity our visual 
system, especially when they are present within the same receptive field 
(Desimone & Duncun, 1995; Kastner, De Weerd, Desimone, & Ungerleider, 
1998; Reynolds, Chelazzi, & Desimone, 1999). The visual system selects 
a behaviorally relevant subset of the stimuli in the visual field and 
suppresses the rest. The selected stimuli are preserved for the next stages of 
information processing, and the unselected—i.e., unattended—stimuli are 
‘less’ processed compared to those that are neutral, where attention is not 
given to any of the items in a given visual fi eld. 

Figure 1. Perceptual quality of stimuli projected to the level of consciousness



465Attention and Rivalry Suppression

Attentional suppression, much like rivalry suppression, even renders 
stimuli invisible. When attention is directed elsewhere, we hardly perceive 
what we are looking at; this is known as inattentional blindness (Mack & 
Rock, 1998; Most et al., 2005). Even salient events such as the appearance 
of new objects are not detected when attention is directed to a different 
location. Indeed, the cause of inattentional blindness has been suggested to 
be attentional suppression (Thakral & Slotnick, 2010). Such findings show 
that attentional suppression is able to bring the same end result as rivalry 
suppression: causing stimuli to be invisible. 

Such phenomenal similarity between attentional and rivalry suppression 
is also reflected in their interaction. Attention can influence the rate of 
dominance changes (Chong, Tadin, & Blake, 2005; Lack, 1978) and the 
initial dominance of the attended stimulus (Chong & Blake, 2006; Mitchell, 
Stoner, & Reynolds, 2004)2. Furthermore, without attention, the ERP and 
behavioral signatures demarcating perceptual changes disappear (Brascamp 
& Blake, 2012; Zhang, Jamison, Engel, He, & He, 2011). A recent study (Ling 
& Blake, 2012) suggests that attention and rivalry suppression operate via 
the same computational mechanism of normalization (Reynolds & Heeger, 
2009).

Attention and suppression change the perceptual quality of the visual 
stimuli in opposite ways. Attention enhances the perception of relevant 
items, making them consciously vivid. Meanwhile, attention filters out other 
irrelevant items. These unattended stimuli are less processed compared to 
neutral ones, and they are sometimes even rendered invisible. Similarly, 
suppression reduces the visibility of the stimuli to the unconscious level. 

Neural Correlates of Attention and Suppression: The Fronto-Parietal 
Network

The commonalities between attention and suppression are also reflected 
in their neural correlates. The fronto-parietal network is important for 

2 Note that attentional suppression plays a more active role than rivalry 
suppression. Meng & Tong (2004) found that observers showed much weaker 
attentional control over rivalry alternations than Necker cube alternations.
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attention. Specifically, the network is implicated in orienting attention 
(Buschman & Millner, 2007; Corbetta & Shulman, 2002; Nobre, 2001). 
When spatial attention shifts from one visual field to another, the superior 
parietal cortex shows transient neural activities (Yantis et al., 2002). Duncan 
(2006) also suggests that activities biased by attention arise from the 
frontal and parietal cortices. The same network appears to be responsible 
for various types of attention, regardless of whether they are feature-based 
(Shulman, 2002) or location-based (Corbetta, 1998).

The fronto-parietal network has also been implicated in triggering state 
changes in rivalry. Reviews of recent brain-imaging studies (Rees, Kreiman, 
& Koch, 2002; Sterzer, Kleinschmidt, & Rees, 2009) have viewed the role 
of fronto-parietal network as initiating perceptual changes in bi-stable 
figures (but see also Knapen, Brascamp, Pearson, van Ee, & Blake, 2011). 
Moreover, activities in the right fronto-parietal region were correlated with 
perceptual transitions in rivalry (Lumer, Friston, & Rees, 1998). Consistent 
with this finding, rTMS over the right superior parietal cortex reduced 
dominance durations in rivalry (Carmel et al., 2010), implying that rTMS 
interfered with maintaining the current state of rivalry.

The parietal cortex appears to initiate shifts of attention (Yantis et al., 
2002) and perceptual alternation during rivalry (Carmel et al., 2010). This 
initiation in turn flows down to content-specific visual areas to modulate the 
amount of attention and suppression. In both humans (Ruff, Blankenburg, 
Bjoertomt, Bestmann, Freeman, Haynes, ... & Driver, 2006) and monkeys 
(Moore & Armstrong, 2003), activities in the early visual cortex were 
directly influenced by electrical stimulation to the frontal eye fields.

Hierarchical Representation of Attention and Suppression

Attention and suppression initiated from the parietal cortex are 
hierarchically reflected in visual areas. More specifically, both effects are 
observed over multiple stages of visual processing with stronger effects 
towards higher visual areas. We argue that both attention and suppression 
have greater effects in higher visual areas in order to cope with increased 
complexity of information (Felleman & Van Essen, 1991; Ungerleider & 
Mishkin, 1982).
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Attentional selection occurs at multiple stages of visual information 
processing. Attentional effects are observed as early as LGN (O’Connor, 
Fukui, Pinsk, & Kastner, 2002), consistent with the early selection models 
of attention (Broadbent, 1982). The effects, however, are more pronounced 
for successive visual areas along the hierarchy (Kastner, De Weerd, 
Desimone, & Ungerleider, 1998; Schwartz, Vuilleumier, Hutton, Maravita, 
Dolan, & Driver, 2005). 

The locus of visual selection depends on the perceptual load imposed on 
the visual system (Lavie, 1995; 2000; Lavie & Cox, 1997; Lavie & Tsal, 
1994). More precisely, the extent to which a perceptual task consumes 
available resources determines how much task-irrelevant, unselected stimuli 
will be processed. With a high perceptual load, there is not enough capacity 
to process irrelevant stimuli and selection appears to occur at an early stage. 
In contrast, when the perceptual load is low, task-irrelevant stimuli will 
receive enough attentional resources to be processed, in accordance with the 
late-selection model (Deutsch & Deutsch, 1963). The selection is modulated 
more by the task load at higher visual areas compared to early visual areas 
(Schwartz et al., 2005), implying that the complexity of information affects 
later visual processing more.

Suppression also achieves its goal over multiple stages of visual 
processing, and the effects become augmented in higher areas. The visibility 
of an adaptor during rivalry modulated the amount of spiral motion 
aftereffects (Wiesenfelder & Blake, 1990), whereas it did not affect the 
aftereffects of linear motion (Lehmkuhle & Fox, 1975, but see also Blake 
et al., 2006). Because linear motion is mostly processed in early visual 
areas (Movshon & Newsome, 1992) and spiral motion is mostly processed 
in higher visual areas such as MST (Duffy & Wurtz, 1991), these results 
suggest that the depth of suppression becomes larger along the dorsal 
stream. This trend was confirmed using plaid-pattern-induced motion 
aftereffects (Van Der Zwan, Wenderoth, & Alais, 1993). Motion aftereffects 
were reduced with the plaid pattern but not with a component grating as an 
adaptor.

In the ventral stream, the ERP amplitudes of suppressed stimuli were not 
reduced in early visual areas (Riggs & Whittle, 1967, but see also Zhang 
et al., 2011), whereas in higher areas the depth of suppression was larger 
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even to a level corresponding to the physical removal of stimuli (Moradi, 
Koch, & Shimojo, 2005). Nguyen et al. (2003) investigated the depth of 
suppression depending on the complexity of stimuli and found that probe 
detection became progressively more difficult as the complexity of a 
suppressed stimulus increased. In addition, more neurons in higher visual 
areas showed the pattern of activities that was correlated with percept 
changes in rivalry (Leopold & Logothetis, 1996). Again, these results 
suggest that the depth of suppression becomes deeper in higher areas. 3

In summary, the effects of attention, originated from the higher 
information processing stages (Hochstein & Ahissar, 2002), are stronger 
in higher visual areas (Kastner et al., 1998; Schwartz, 2005) and are 
observed in multiple stages of visual processing (Broadbent, 1958; Deutsch 
& Deutsch, 1963; Treisman, 1960). Similarly, the effects of suppression 

3 Please note that this examination is not a thorough investigation of the literature 
by any means. We simply wanted to check the magnitude of both effects in 
relatively well-matched studies

Box 2. Magnitudes of attention and suppression

We examined various studies to compare the magnitudes of attention and 
suppression.3 A correspondence was made between an attended stimulus and 
a dominant stimulus in rivalry. Likewise, unattended and suppressed stimuli 
were considered to be similar conditions. Therefore, in the field of attention, 
we selected studies in which performances during attended and unattended 
conditions were reported. In rivalry, we chose studies that compared the 
visibility of dominant and suppressed stimuli. In our search, we found 13 
such experiments from 10 articles on attention and 13 experiments from 8 
articles on suppression. We generated an index to normalize the effects from 
various experiments and measurements. The index was defined as the absolute 
difference between measurements from the two conditions (attended and 
unattended periods for attention experiments, and dominant and suppressed 
periods in rivalry) over their sum. The index can have values between 0 and 
1, where 0 indicates no effect (neither enhancement nor suppression of the 
stimulus) and 1 indicates maximum effect. The indices for attention ranged 
from 0.03 and 0.5, and those for suppression ranged from 0.1 and 0.7 (Figure I). 
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Figure I. Distribution of attention and suppression indices

The asterisk within each distribution indicates the group means, which is 
0.27 for attention and 0.34 for suppression. The letter or number next to 
each data point indicates the study from which the index was calculated. The 
measurements in each experiment are also shown in the reference list below. 

Attention
a.   Orientation discrimination threshold 

(Chica, Lasaponara, Chanes, 
Valero-Cabré, Doricchi,Lupiáñez, 
& Bartolomeo, 2011)

b.   Apparent contrast (Pestilli & 
Carrasco, 2005) 

c.   Apparent contrast (Liu, Abrams, & 
Carrasco, 2009)

d.   Apparent fl icker rate (Montagna & 
Carrasco, 2006) 

e.   Tilt of gratings (Spivey & Spirn, 
2000) 

Suppression 
1.   Error rate on probe detection 

(Collyer & Bevan, 1970)
2.   Flash detection accuracy (Blake & 

Camisa, 1978) 
3.   Letter discrimination accuracy (Fox 

& Check, 1972)
4.   Probe detection accuracy (Norman 

et al., 2000) 
5.   Probe detection accuracy (Blake & 

Camisa, 1979) 
6.   Flash duration (Wales & Fox, 1970) 
7.   Reaction time for probe detection 
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become stronger towards higher areas (Nguyen et al., 2003) and occur in 
multiple stages of visual processing as well (Blake & Logothetis, 2002; 
Tong, Meng, & Blake, 2006). In addition, the magnitudes of the two effects 
are also observed to be in comparable ranges across multiple studies (see 
Box 2).

Conclusions

Early researchers have only noted the similarity between attention and 
binocular rivalry as aspects of the visual selection mechanism (William 
James, 1890; von Helmholtz, 1924). Here, we review recent experimental 
evidence of various similarities and make a connection between attention 
and rivalry suppression via consciousness. The connection is further 
supported by the similar fates of unattended information and suppressed 
information: both attention and rivalry suppression can render stimuli 
invisible and they even interact, indicating that they are based on the 
common mechanism (normalization). The neural correlates of attention and 
suppression also share the same origin: the fronto-parietal network. Finally, 
both effects become more pronounced in higher visual areas to serve 
the same purpose of increasing selection efficiency given more complex 
stimuli.

Despite these similarities, attention and suppression have not been 

f.   Apparent contrast (Carrasco et al., 
2004)

g.   ERP amplitude on letter 
discrimination (Koivisto, 
Kainulainen, & Revonsuo, 2009)

h.   MAE duration (Sohn, Papathomas, 
Blaser, & Vidnyánszky, 2004)

i.   Filling-in occurrence (De Weerd, 
Smith, & Greenberg, 2006)

j.   MEG gamma band activity power 
for orientation discrimination task 
(Wyart & Tallon-Baudry, 2008)

    (Blake & Fox, 1974) 
8.   Orientation discrimination 

threshold (Stuit, Cass, Paffen, & 
Alais, 2009) 
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proposed to serve a common goal in the visual system. Recent studies 
suggest, however, that suppression as well as attention work in order to 
achieve an economical representation of a complex scene. More specifically, 
the visual system uses suppression to retain possibly necessary information 
without conscious effort, as invisible items can still contribute to the visual 
working memory (Soto, Mäntylä, & Silvanto, 2011). Moreover, a transient 
signal in the suppressed eye—an indicator of a new and potentially 
important input—usually breaks suppression (Blake, Westendorf, & 
Fox, 1990). Attention may bring the suppressed information back to 
consciousness. Although invisible high-level stimuli such as faces do not 
usually produce aftereffects (Moradi et al., 2005), they can if they are 
attended (Shin, Stolte, & Chong, 2009). In addition, it has been proposed 
that visual features could be unconsciously bound (Lin & He, 2009), 
although the binding is fragile unlike the conscious one. Therefore, it is 
plausible that invisible features under suppression are weakly bound and 
promptly used when attended.

We propose that both attention and suppression operate to overcome the 
limited capacity of the visual system: attention selects relevant information 
and suppression keeps potentially relevant (currently irrelevant) information 
without additional costs. As the visual system processes more complex 
information in higher areas, the burden of retaining the information 
increases because more refined and complex representation is required. 
Thus, attention helps the visual system to reduce the burden by augmenting 
its effects and suppression is able to do the similar job by increasing the 
depth of suppression.
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