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Continuous flash suppression (CFS) entails presentation of
a stationary target to one eye and an animated sequence
of arrays of geometric figures, the mask, to the other eye.
The prototypical CFS sequence comprises different sized
rectangles of various colors, dubbed Mondrians.
Presented as a rapid, changing sequence to one eye,
Mondrians or other similarly constructed textured arrays
can abolish awareness of the target viewed by the other
eye for many seconds at a time, producing target
suppression durations much longer than those associated
with conventional binocular rivalry. We have devised an
animation technique that replaces meaningless Mondrian
figures with recognizable visual objects and scenes as
inducers of CFS, allowing explicit manipulation of the
visual semantic content of those masks. By converting
each image of these CFS sequences into successively
presented objects or scenes each comprised of many
small, circular patches of color, we create pointillist CFS
sequences closely matched in terms of their spatio-
temporal power spectra. Randomly rearranging the
positions of the pointillist patches scrambles the images
so they are no longer recognizable. CFS sequences
comprising a stream of different objects produces more
robust interocular suppression than do sequences
comprising a stream of different scenes, even when the
two categories of CFS are matched in root mean square
contrast and spatial frequency content. Factors promoting
these differences in CFS potency could range from low-
level, image-based features to high-level factors including
attention and recognizability. At the same time, object-

and scene-based CFS sequences, when themselves
suppressed from awareness, do not differ in their
durations of suppression, implying that semantic content
of those images comprising CFS sequences are not
registered during suppression. The pointillist technique
itself offers a potentially useful means for examining the
impact of high-level image meaning on aspects of visual
perception other than interocular suppression.

Overview

This paper introduces a novel visual animation
technique for inducing continuous flash suppression
(CFS), a very robust form of interocular suppression.
This technique’s novelty stems from its use of
recognizable visual objects and scenes as the inducers of
CFS. We start by describing our motive for developing
this technique, then we describe how the interocular
masks are created, and finally, we validate their utility
in several psychophysical experiments.

Background and rationale

For decades, psychologists have deployed a variety
of different psychophysical strategies for temporarily

Citation: Cha, O., Son, G., Chong, S. C., Tovar, D. A., & Blake, R. (2019). Novel procedure for generating continuous flash
suppression: Seurat meets Mondrian. Journal of Vision, 19(14):1, 1–22, https://doi.org/10.1167/19.14.1.

Journal of Vision (2019) 19(14):1, 1–22 1

https://doi.org/10 .1167 /19 .14 .1 ISSN 1534-7362 Copyright 2019 The AuthorsReceived February 2, 2019; published December 2, 2019

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Downloaded from jov.arvojournals.org on 12/03/2019

https://creativecommons.org/licenses/by-nc-nd/4.0/


disrupting awareness of an ordinarily visible stimulus
(Breitmeyer, 2015; Kim & Blake, 2005; Lin & He,
2009), with visual masking and binocular rivalry (BR)
being chief among those strategies (see Hedger, Gray,
Garner, & Adams, 2016, figure 1). And since its
introduction by Fang and He (2005) and by Tsuchiya
and Koch (2005), a variant of BR dubbed continuous
flash suppression (CFS) has dominated in popularity
owing to its remarkable potency. The essence of this
effective dichoptic stimulation technique is the presen-
tation of an ordinarily visible, static image to one eye
pitted against an animated sequence of geometric
figures or textures viewed by the other eye. In Tsuchiya
and Koch’s (2005) version of CFS, the figures were
different sized rectangles of various colors, inspiring
them to dub these images Mondrians after the 19th and
20th century Dutch painter Piet Mondrian whose
abstract compositional style evolved to the use of the
simplest of forms and colors devoid of figurative
quality. The CFS technique quickly became popular,
leading others to concoct a variety of derivative
configurations for generating CFS including dense
textures comprised of small, colored checks (e.g., Van
Opstal, De Loof, Verguts, & Cleeremans, 2016), arrays
of tiny ellipses differing in aspect ratio (Gray, Adams,
Hedger, Newton, & Garner, 2013), band-pass filtered
random noise (Han & Alais, 2018), and arrays of small
grating patches intermingled with extended edges (e.g.,
Maruya, Watanabe, & Watanabe, 2008). When pre-
sented to an eye one after the other at a moderate
frequency (e.g., 10 Hz), these arrays of geometric
elements prove sufficient to suppress visibility of a
static image viewed by the other eye for many seconds
at a time, generating suppression lasting much longer
than suppression durations associated with conven-
tional BR (Ludwig, Sterzer, Kathmann, Franz, &
Hesselmann, 2013).

Since coming on the scene, CFS has been a real
workhorse in the study of visual processing outside of
awareness (Gayet, Van der Stigchel, & Paffen, 2014;
Lunghi, Lo Verde, & Alais, 2017; Moors, Hesselmann,
Wagemans, & van Ee, 2017; Sterzer, Stein, Ludwig,
Rothkirch, & Hesselmann, 2014; Yang, Brascamp,
Kang, & Blake, 2014). The general strategy has been to
present over test trials different kinds of static images
(e.g., neutral vs. emotional faces) to one eye while the
other eye views a potent Mondrian CFS sequence, the
aim being to ascertain: (a) whether exemplars of those
different stimulus types generate reliably different
durations of suppression (e.g., Abir, Sklar, Dotsch,
Todorov, & Hassin, 2018; Gray et al., 2013; Hung,
Styles, & Hsieh, 2017; Jiang, Costello, & He, 2007;
Moors, Boelens, van Overwalle, & Wagemans, 2016;
Mudrik, Breska, Lamy, & Deouell, 2011; Rabagliati,
Robertson, & Carmel, 2018; Stein, Sterzer, & Peelen,

2012; Rothkirch & Hesselmann, 2018; Yang, Zald, &
Blake, 2007); (b) whether those stimuli, despite being
suppressed from awareness, are capable of generating
differential visual adaptation aftereffects (e.g., Kaunitz,
Fracasso, & Melcher, 2011; Maruya et al., 2008; Stein
& Sterzer, 2011; Sweeny, Grabowecky, & Suzuki, 2011)
or exerting differential influences on perceived numer-
osity (Doi & Shinohara, 2016); (c) whether an object
suppressed from awareness can nonetheless support
accurate reach and grasp behavior (Ludwig et al., 2013;
Roseboom & Arnold, 2011); (d) whether affectively
tinted images draw spatial attention when those images
are presented outside of awareness (Jiang, Costello,
Fang, Huang, & He, 2006); (e) whether object priming
or semantic priming can be induced by words or
pictures suppressed from awareness (Peel, Sherman,
Sperandio, Laycock, & Chouinard, 2019; Zabelina et
al., 2013); (f) whether autonomic reactivity can be
triggered by stimuli presented outside of awareness
(Chiesa, Liuzza, Acciarino, & Aglioti, 2015); or (g)
whether neural activity varies in magnitude or cortical
distribution in response to different categories of
stimuli presented during CFS (Almeida, Mahon,
Nakayama, & Caramazza, 2008; Eo, Cha, Chong, &
Kang, 2016; Fang & He, 2005; Kang, Blake, &
Woodman, 2011; Lapate et al., 2016; Sakuraba, Sakai,
Yamanaka, Yokosawa, & Hirayama, 2012; Sterzer,
Haynes, & Rees, 2008).

In this paper we describe a complementary strategy
for utilizing CFS as an inferential tool for investigating
stimulus-specific concomitants of visual suppression of
awareness. To date, CFS has been deployed to learn
whether information processing within specific neural
substrates survives perceptual suppression of the
stimulus that triggers processing in those substrates.
The emphasis, in other words, has been on the nature
of the suppressed stimulus (e.g., animals vs. tools,
upright faces vs. inverted faces, intact objects vs.
scrambled images of those objects)—the CFS mask
itself is purposely designed to be neutral with respect to
specific figural attributes (e.g., consider the CFS
toolbox created by Nuutinen, Mustonen, & Häkkinen,
2018). To put it in other words, random arrays of
rectangles, ellipses or gratings do not imbue visual
meaning to a CFS mask. To be sure, there are CFS
studies that have attempted to identify low-level feature
properties that empower a CFS display (Barrett, 2018;
Han, Lunghi, & Alais, 2016; Yang & Blake, 2012), or
have attempted to create CFS conditions that mitigate
the impact of those properties (Ramamurthy & Blaser,
2018). To our knowledge, however, no one has
explicitly manipulated the image content being depicted
in a CFS display to create configurations that engender
visual meaning in those images. The technique de-
scribed in this paper was created with this aim in mind
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and, moreover, to equate visually meaningful CFS
stimuli and scrambled versions of those stimuli that are
matched in terms of their low-level spatial frequency
content, their root mean square (RMS) contrast, and
chromatic diversity.

Inspiration for our work came from two earlier
studies demonstrating that robust CFS could be
induced by presenting to one eye a sequence of
recognizable, natural scene images, all comprising
outdoor environments and most including distinct
objects characteristic of those environments (Blake,
Goodman, Tomarken, & Kim, 2019; Kim, Kim, &
Blake, 2017). As anticipated, those natural image
sequences, just like Mondrian-based CFS, produced
prolonged durations of invisibility of a contrast-
modulated bull’s-eye pattern viewed by the other eye.
In a refinement and extension of that technique, we
wanted to compare potency of CFS displays comprised
of objects to CFS displays comprised of scenes. These
two categories were chosen based on evidence pur-
portedly showing that pictures of objects and pictures
of scenes are processed by distinct neural mechanisms.
Of course, scene pictures can include objects that are
congruent with the scenic layout (e.g., a cow standing
in a pastoral scene). Still, evidence suggests that scenic
information and object information differentially acti-
vate regions within the occipital cortex, creating
‘‘gradients’’ of information about objects and spatial
layout (Harel, Kravitz, & Baker, 2013; Kamps, Julian,
Kubilius, Kanwisher, & Dilks, 2016; Kravitz, Peng, &
Baker, 2011). To create the CFS animations necessary
for our purposes, we selected object and scene images
that have been used by others (see Methods), with the
stipulation that scenes include only images portraying
easily recognized spatial layouts containing few, if any,
large, discrete objects in the scenes.

By way of preview, we discovered that CFS masks
comprising different objects produced more robust
interocular suppression than did CFS masks compris-
ing different scenes. That finding did not surprise us
particularly, for exemplars within those two image
categories can differ notably in their global spatial
configurations which, in turn, could impact their
relative stimulus strength. What that finding did do,
however, was prompt us to develop a novel technique
that could equate those two categories of images in
terms of spatial frequency and orientation, while
preserving the specific connotations depicted by those
two categories of images. That technique involved
recreating each image as an array of small colored dots,
mimicking the pointillist painting technique developed
by 19th century post-impressionist French painter
George Seurat (whose work predated that of Piet
Mondrian by several decades).

Experiment 1: Comparison of CFS
displays comprised of objects/
scenes

Methods

Participants

Ten participants (five women and five men, mean age
¼ 26.2 years) were recruited from Yonsei University.
From the outset, our plan was to rely on recurrent
Bayesian analyses to govern our sample size, knowing
that the Bayes factor becomes progressively smaller with
increasing sample size in cases where the null hypothesis
becomes more and more likely than one’s alternative
hypothesis (Dienes, 2011; Rouder, 2014; Schönbrodt,
Wagenmakers, Zehetleitner, & Perugini, 2017). This
strategy resulted in a sample size of 10 participants, as
the Bayesian analyses showed very strong evidence
(Bayes factor .150) in favor of the hypothesis that the
category of stimulus images comprising CFS sequences
influences robustness of suppression.

All participants had normal or corrected-to-normal
vision and good stereopsis, and they were naı̈ve to the
purpose of the experiment. Each provided written
informed consent, and monetary compensation was
provided for their participation. The study was
approved by the Institutional Review Board of Yonsei
University.

Apparatus

Stimuli were displayed on two gamma-corrected
monitors (Sun Microsystems GDM-5410; resolution of
1280 3 960; frame refresh rate of 75 Hz) in a dark
room. A two-mirror stereoscope reflected the images
portrayed on the two monitors to the corresponding
retinal locations of each eye. The participant’s head
position was stabilized by a head-and-chin rest,
ensuring that the viewing distance of 65 cm was
maintained. The luminance of the two monitors was
linearized and equalized using customized gamma
correction code (available at http://github.com/
oakyoon/vcc-gamma). The equalized luminance of the
two monitors was 84.4 cd/m2 at maximum and the
luminance of the gray background used through all
experiments was 42.29 cd/m2. All stimuli were gener-
ated using MATLAB (MathWorks, Natick, MA) and
the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997).

Stimuli and design

We selected images of single objects from the set
described in Konkle, Brady, Alvarez, and Oliva (2010)
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and images of natural and urban scenes from the set
described in Oliva and Torralba (2001). For our
purpose, all images were sized such that each was
centered within a circular window that comprised
approximately 80% of the total image area occupied by
each CFS mask display (see Figure 1). From the set of
object images, we discarded those in which the object
occupied more than 60% or less than 20% of that area,
to ensure that object images were not cropped by the
circular window while being large enough to be
recognizable. For each image from both data sets, we
calculated the average luminance, RMS contrast, and
spectral power distributions of grayscale-transformed
versions of those images. Images defined as outliers by
a criterion amount established by a standard shoulder
method were discarded from the final image set,
resulting in retention of 503 object images and 720
scene images, which, in the actual experiment, were
rendered in color. RMS contrast values of the retained

object images ranged from 17% to 39% and RMS
contrast values of the retained scene images ranged
from 17% to 26%. In both of those image sets,
individual RMS values were uniformly distributed
within those ranges. Among the object images were
many that are graspable (e.g., a cup) but also many that
are not (e.g., a car). Among the final set of scene images
were ones portraying natural environments (e.g.,
seashore) and others portraying urban environments
(e.g., buildings). All 1,223 images were resized to 2003

200 pixels (4.408 3 4.408) and windowed by a circular
aperture 200 pixels in diameter. These images were
presented with 14% opacity on a uniform gray
background. That value was selected based on pilot
work aimed at creating CFS masks that would permit
the target stimulus viewed by the other eye to achieve
dominance on most of the test trials, each of which
lasted 15 s.

Figure 1. Procedures of Experiment 1. In each trial, different image sequences were presented to the left eye and to the right eye (i.e.,

to the separate video monitors). One eye viewed different exemplar images of objects (shown here) or of scenes, with successive

images each being presented for 13.33 ms. The other eye viewed a rotating pinwheel grating whose contrast was initially low and

then steadily increased over time, a maneuver ensuring that participants initially saw only the image sequence and not the pinwheel

grating. Participants pressed one of two computer keys as soon as they could discern the grating’s direction of rotation, which varied

between CW and CCW randomly over trials.
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To create object-based and scene-based CFS masks,
we created animations of images drawn randomly from
one category and presented in succession at a rate of
9.375 Hz (8 video frames/image, where a video frame
was 13.33 ms), a value close to the modal display rate
used in conventional CFS displays. A given CFS mask
could be presented on either the left-hand or the right-
hand video monitor. The monocular target stimulus
pitted against the CFS mask was a circular-shaped
pinwheel figure consisting of eight alternating black
and white sectors whose luminance profile was defined
by a sinusoidal function and circular border by a
logistic function to eliminate sharp edges. The pinwheel
target initially appeared at a very low contrast 600 ms
after the CFS sequence started, and its contrast then
smoothly increased to 100% over 9.4 s and stayed at
100% until the trial ended. During the period of
increasing contrast, the target’s contrast C varied
according to the following formula: C(t)¼ log10(1þ 93
(t – 0.6) ‚ 9.4). On any given presentation, the
pinwheel’s sectors rotated either clockwise or counter-
clockwise at 4 rpm. Both the CFS mask and the
pinwheel target were centered within ring-shaped
fusion frames (inner diameter: 5.298, thickness: 0.228),
with a central fixation point (a white square framed by
black lines extending 0.188 3 0.188) located at the
centers of left- and right-eye displays (see Figure 1 for a
schematic of these displays).

In Experiment 1, the aim was to determine target
breakthrough times (BTs) for each category of CFS
mask (object and scene). Over trials, the eye receiving
the CFS mask and the eye receiving the target were
counterbalanced over an irregular sequence. With 24
trials of repetition, the experiment consisted of 96 trials
(object/scene 3 left eye/right eye 3 24).

Procedures

Each trial began with presentation of the fusion
stimuli and fixation point. This signaled the participant
to fixate the central fixation point and press the
spacebar on the computer keyboard to initiate a trial,
an example sequence of which is illustrated in Figure 1.
In this experiment, the CFS mask appeared abruptly
followed 600 ms later by the gradual presentation of the
rotating pinwheel target, achieved by ramping the
target’s log-contrast from 0% to 100% over the initial
9.4 s, after which it remained unchanged until the
participant made a response indicating the direction of
rotation of the pinwheel (clockwise or counter-clock-
wise). Because of the brief delay between the initial,
abrupt onset of the CFS mask and gradual appearance
at the low contrast pinwheel, participants always
perceived the CFS mask exclusively at the beginning of
each trial. Eventually the direction of rotation of the
pinwheel target became sufficiently conspicuous for the

participant to report its direction of rotation, which
was done by pressing one of two keys promptly and
accurately. Trials were terminated if the participant
failed to make a response within 15 s. Before formal
data collection, a practice session ensured that partic-
ipants were familiar with the stimuli and that they
understand the task.

Analysis

JASP statistics software (JASP Team, 2018) was
used to conduct Bayesian analyses. Before analyzing
BTs, we rejected the trials on which a participant
reported the incorrect direction of rotation of the target
stimulus (M: 0.95%, SD: 2.65%) or did not report
seeing the target (M: 2.19%, SD: 3.94%). To compen-
sate for individual differences in BTs (cf. Blake,
Goodman,Tomarken, & Kim, 2019), we normalized
each person’s data by computing the grand mean BT
for each person, and then divided each of that person’s
individual BTs by that grand mean.

Results and discussion

The scatterplot in Figure 2a summarizes the mean
BT for object-based CFS and scene-based CFS for each
of the 10 individuals. It is immediately obvious that
object-based CFS masks produce longer BTs than do
scene-based masks, as evidenced by the consistent
appearance of data points below the diagonal of the
scatterplot. Also, as expected based on earlier work
(e.g., Gayet & Stein, 2017), we see that BTs vary
substantially among individuals.

Figure 2b shows the normalized BTs averaged over
the 10 observers for each of the two categories of CFS
mask. Those averages just reiterate the difference in
CFS robustness evidenced by the scatterplot in Figure
2a. An even more complete picture of those differences
is revealed by the shift-plot format (Rousselet, Pernet,
& Wilcox, 2017) in Figure 2c, in which BTs measured
on every single trial of the experiment and normalized
over participants are plotted separately for the two
conditions (object trials in red, scene trials in yellow).
Bayesian t tests confirm the obvious: normalized BTs
for CFS mask comprised of objects are larger than 1
(M ¼ 1.248, SD ¼ 0.045, BF10 ¼ 350,197), and
normalized BTs for CFS mask comprised of scenes are
smaller than 1 (M¼ 0.764, SD¼ 0.037, BF10¼ 1.021 3
106, note that these statistical results are interdepen-
dent). In other words, object-based CFS masks create
more robust interocular suppression (i.e., longer BTs)
than do scene-based CFS masks.

It is possible, of course, that the difference in CFS
potency between objects and scenes has nothing to do
with recognition of the content of those streams of
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images but instead, is attributable to differences in the
spatio-temporal energy produced by those CFS se-
quences. This idea can be formalized in several different
ways. One way is to use dissimilarity matrices that
specify the average difference in RGB values of all
pixels in all possible pairs of images (Figure 3). Color is
used to signify the magnitude of those differences,
using the coding scheme described in the figure caption.
Obviously, object images are more similar to one
another than are scene images, and one likely reason
for that is that the backgrounds are more uniform
across object images. With this in hand, consider the
temporal energy created by a CFS mask comprising a
sequence of two successive images drawn from the same
image category, conditions actually tested in Experi-
ment 1. The mean of the change in luminance created
when a given object image is replaced by another object
image is very likely to be less than is the mean of the
change in luminance created when given scene image is
replaced by another scene image. This is going to be

true over all successive image changes comprising the
CFS sequence, meaning that the amplitude of the
temporal frequency energy associated with object-
based CFS masks will be less than the energy associated
with scene-based CFS masks.

The same picture emerges when considering the
spatial frequency content of object images and scene
images used in Experiment 1, as summarized by the
spectra in Figure 4. The plot on the left shows that
object images tend to have more energy, on average,
than do scene images. At least part of this difference is
attributable to the object images having higher RMS
contrasts, on average, than did scene images. The plot
on the right shows that within our sample of images,
scenes varied more in amplitude over all spatial
frequencies than did object images. This latter differ-
ence is a reflection of the weaker similarity RGB
luminance values among scenes compared to similarity
among objects (Figure 3).

It is difficult to know how these and other possible
differences in low-level stimulus properties among these
two image categories might be responsible for the
pattern of results seen in Figure 2. What is needed is a
means for equalizing object and scene images while
preserving their unique identities. This was the motive
for development of the procedure described and tested
in the next section.

Experiment 2: Comparison of CFS
masks animated with normal or
scrambled pointillist images of
objects or scenes

We developed an image generation technique that
closely matches spectral power distributions of images
while maintaining their distinct figural appearances. As
mentioned earlier, the technique was inspired by the
pointillism format developed by George Seurat,
wherein small dots of uniform color perceptually
coalesce to portray recognizable global forms. In our
version, images of objects and scenes are used as ‘‘seed’’
images that determine the colors of dots scattered over
a canvas of the same size as the seed image. We created
a large number of these pointillist images from the same
sets of object and scene images used in Experiment 1,
and then animated a long series of them by showing
one after another at 9.375 Hz.

Pointillist image technique

A pointillist image is made from a set of dots and a
seed image that determines the colors of dots (see

Figure 2. Results of Experiment 1. (a) Each dot plots the average

breakthrough time (BT) for a participant measured for the

object sequence trials and for the scene sequence trials. (b) The

bar chart shows normalized BTs for object and for scene

sequences averaged over all participants; error bars indicate

95% confidence intervals. (c) Using the shift-plot format

(Rousselet et al., 2017), these clusters of data points show

normalized BTs for every individual trial aggregated over all

participants, for object and for scene sequences. Each dot

designates the BT for a given trial, black lines indicate 50th

percentile, and gray lines indicate 10th and 90th percentiles.
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Figure 5 for examples of pointillist images). First, dots
of various sizes are placed randomly over a canvas of
the same size as the seed image. Dot sizes and locations
are constrained to prohibit them from touching one
other. The color of a given dot corresponds to the color
portrayed in the seed image at the location of the center
of each dot. For our displays, we placed 630 dots over a
circular canvas of 200 pixels (4.408) in diameter. One
third of the dots had a diameter of 5 pixels (0.118),
another third had a diameter of 4 pixels (0.098), and the
other third had a diameter of 3 pixels (0.078). We placed
larger dots first and then smaller dots among larger
dots to generate a denser array. We created 1,000 sets
of 630 dots for each participant and used these sets to
create pointillist images. As an aside, our technique
could be construed as a variant of the ‘‘bubbles’’
technique introduced by Gosselin and Schyns (2001)
for the study of object recognition and the salient
features that support it. But their aim was exactly the

opposite of ours: they sought to degrade recognition by
sparsely sampling images seen within a relatively few
blurred portions of it, whereas we sought to promote
good image recognition by dense sampling of the
images.

Figure 5 shows examples of the pointillist images
together with the seed images, used in Experiment 1,
from which those pointillist images were created. One
ostensible advantage to this technique is that the local
visual properties defined by the dots are approximately
equal among pointillist images: images are comprised
of the same number of dots with the same limited range
of diameters, thereby ensuring that all images are
identical in their area of stimulus and total contour
content. In terms of spatial frequency and orientation,
this conversion equates spectral power distributions
and their variance in the spatial frequency range higher
than the spatial frequency associated with the average
size of the dots, while preserving the global pattern

Figure 3. Dissimilarity matrices of the entire set of object images (left panel) and the entire set of scene images (right panel) used in

Experiment 1. Dissimilarity between two images is defined as the average RGB distance of every pixel inside the circular aperture.

Dissimilarity between the same images (i.e., minimum dissimilarity) is thus 0, and at its maximum the dissimilarity value can be a

cube root of 3 (1 þ 1 þ 1, each for red, green, and blue luminance differences).

Figure 4. Average amplitude spectra (a) and variance of contrast energy in the amplitude spectra (b) for object images and scene

images.
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embedded in the lower spatial frequency range (Figure
6). This technique also removes traces of small objects
in the scene images thereby placing emphasis on their
spatial layout per se. In our experiments, the average
dot size was 4 pixels and the seed images extended 200
3 200 pixels. Consequently, the global pattern embed-
ded in spatial frequencies lower than 25 cpi (cycles per
image) survives the conversion to a pointillist image,
maintaining the visual impression of the objects and the
scenes being depicted.

A second advantage provided by pointillist images is
that they can be ‘‘scrambled’’ simply by relocating the
constituent dots. On the bottom row of Figure 5 are
examples of scrambled pointillist images used in
Experiment 2. Since this scrambling procedure only
changes the locations of dots, it does not influence the
local visual properties; that is, the spectral power
distribution in the high spatial frequency range. Only
the global pattern embedded in the lower spatial
frequency range will be disturbed (Figure 6a and 6b,
differences between the solid red/yellow and dashed
black lines). We believe this form of scrambling is a
viable alternative to the conventional technique of
phase-scrambling, wherein a visual image is decom-
posed into a set of sine-wave components of various
orientations and spatial frequencies that are then
randomized with respect to their relative locations. A

phase-scrambled image has the same spectral energy as
the original image in both high and lower spatial
frequency ranges, and this, of course, destroys any hint
of the image’s original content. But it is impossible to
know whether this destruction of image ‘‘legibility’’ is
attributable to the degradation of global pattern or
local visual properties. Perceptually, there are qualita-
tive differences between an original image and its
phase-scrambled counterpart: phase-scrambled images
typically lack sharp edges and extended, homogeneous
surface regions that define the spatial structure evident
in the original images. Our version of scrambling
preserves edges and surfaces of every dot in a pointillist
image. The resulting image will have the same clear
impression of discrete dots as well as approximately the
same amount of energy as that contained in the
original, unscrambled pointillist image.

Experimental design

We made four different types of CFS sequences from
normal and scrambled pointillist images. Two types of
CFS sequences were created from two sets of pointillist
images, one comprising objects and the other scenes.
The other two types of CFS sequences were created
from two sets of scrambled pointillist images of objects

Figure 5. Examples of images comprising continuous flash suppression (CFS) sequences. The top row shows exemplars from the

object/scene image database, the middle row shows pointillist images made from the exemplars in the top row, and the bottom row

shows scrambled pointillist images made by randomly relocating dots from the pointillist images in the middle row. See

Supplementary Movies S1–S4 for examples of object and scene animations—normal and scrambled.
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and of scenes. Note that CFS sequences of normal and
scrambled pointillist images share the same visual
elements (i.e., dots of the same colors) and thus, the
only difference between the two is the recognizability of
the image content. We compared BTs associated with
those two CFS sequences, normal and scrambled.
Prolonged suppression durations of the normal CFS
sequences relative to the scrambled CFS sequences
would implicate strengthened suppression caused by
recognizable image content.

Methods

Participants

The same 10 participants who served in Experiment
1 participated in Experiment 2, again with informed
consent and approval by the Institutional Review
Board of Yonsei University. Again, we collected data
from 10 participants, because this sample size showed
very strong evidence (Bayes factor .150) in favor of
the hypothesis of interest.

Stimuli and design

In Experiment 2, object and scene images were used
as seed images to generate CFS sequences of pointillist

images in the fashion described above (for the
MATLAB code, see https://github.com/oakyoon/
pretina-fabric). It is worth noting that approximately
73.75% of individual image pixels in these pointillist
images constituted the background within which the
windowed apertures appeared, and those background
pixels were uniform gray. Thus, the overall RMS
contrast values of the pointillist images was less than
that of the original images, and the residual differences
in RMS contrast among pointillist images were smaller.

In Experiment 2, we presented all four combinations
of two classes of CFS masker stimuli (object and scene)
and two types of CFS dot placements (normal and
scrambled). Our aim was to determine BTs for each
category of CFS mask. Over trials, the eye receiving the
CFS mask and the eye receiving the target were
counterbalanced over an irregular sequence. With 24
trials of repetition, the experiments consisted of 192
trials (object/scene 3 normal/scrambled 3 left eye/right
eye 3 24).

Procedure

The presentation sequence of the visual stimuli and
participants’ task were the same as in Experiment 1.
The only exception was that the CFS displays consisted
of pointillist images instead of images of low opacity.

Figure 6. Average amplitude spectra of normal and scrambled pointillist images portraying objects (a) and scenes (b), and variance of

contrast energy in the amplitude spectra of normal and scrambled pointillist images portraying objects (c) and scenes (d). Each image

in the object/scene database was converted to a grayscale pointillist image (normal) that was also used to generate a scrambled

version of that pointillist image. The amplitude spectra for each was derived, and the solid and dashed lines in (a) and (b) are the

averages of those amplitude spectra. The solid and dashed lines in (c) and (d) are the variances of those amplitude spectra.
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Analysis

We analyzed our data using Bayesian repeated-
measures ANOVA and reported BF10 for all models
and BFinclusion for the effects of interest. First, we
rejected the very infrequent trials on which a partici-
pant reported the incorrect direction of rotation of the
target stimulus (M: 0.26%, SD: 0.51%) and the
infrequent trials on which participants did not report
seeing the target (M: 1.04%, SD: 1.75%). The average
time required for participants to report the target
motion direction (BT) in each condition was then
divided by each participant’s average BT in all
conditions. These normalized BTs were used for further
analyses.

Results and discussion

The average normalized durations required for the
initially suppressed pinwheel target to break suppres-
sion (i.e., achieve perceptual dominance sufficient to
make the two-alternative forced choice judgment of
rotation direction) are shown in Figure 7a. In Figure
7b, those BTs for all trials for all participants in each of
the four conditions (object vs. scene/normal vs.
scrambled) are shown. Longer BTs in the normal
condition relative to the scrambled condition imply
stronger suppression attributable to the recognizable
image content embedded in the normal pointillist
images. Since our interest was in potential differences

between CFS sequences of objects and CFS sequences
of scenes, the statistical effect of interest in Experiment
2 was the interaction between the seed image (object vs.
scene) and dot placements (normal vs. scrambled).
Bayesian repeated-measures ANOVA identified the
model including the interaction as the best model (BF10

¼ 1.174 3 1011, see Table 1), and BFinclusion for the
interaction term was 259.4, indicating that the model
with the interaction term was much more likely than
models without the interaction term. These results are
consistent with the conclusion that the nature of the
image content of CFS masker stimuli can impact the
strength of interocular suppression created by that
masker. Pointillist images of objects presented in rapid
sequence to one eye more effectively maintain sup-
pression of a rotating pinwheel target presented to the
other eye than do CFS sequences comprising pointillist
images of scenes.

To our surprise, CFS masks comprising scrambled
pointillist images of objects also produced more
robust suppression than did CFS masks comprising
scrambled pointillist images of scenes (compare light
red and light yellow bars in Figure 7a). The magnitude
of the differences in CFS potency are quite small for
the scrambled object and scene images compared to
the robustness of unscrambled objects and scenes
(dark and light yellow bars in Figure 7a). Still, this
result is puzzling and led us to wonder whether these
potency differences between pointillist masks com-
prised of objects and of scenes might have something
to do with differences in stimulus strength, not just

Figure 7. Results of Experiment 2. (a) The bar chart plots normalized breakthrough times (BTs) averaged over all participants, with

error bars denoting 95% confidence intervals. (b) Shift-plot graphs show normalized BTs for every trial aggregated from all

participants. Each dot represents one trial, black lines indicate 50th percentile, and gray lines indicate 10th and 90th percentiles.
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content. The resemblance of the spectral power
distributions in Figures 6a and 6b imply that the two
types of images have comparable spatial frequency
content, but, in fact, those spectra were derived using
grayscale versions of the pointillist images, not
colored images like the ones used in Experiment 2.
Moreover, the spectral power distributions of normal
and scrambled object pointillist images reveal slightly
more energy compared to the spectra of normal and
scrambled scene pointillist images. From other work
(Ludwig, Sterzer, Kathmann, & Hesselmann, 2016),
we know that contrast can influence CFS robustness.
We thus felt obliged to repeat Experiment 2 using CFS
masks comprising grayscale pointillist images derived
from seed images matched in RMS contrast for both
stimulus categories, object and scenes. All procedural
aspects of this replication were identical to those used
in Experiment 2—the only difference was that all CFS
masks used in this replication utilized grayscale
pointillist and scrambled images each constructed
from seed images of objects and scenes that were
rendered identical in RMS contrast (18%) and average
luminance (34.03 cd/m2, 40% of the maximum
luminance; see Figure 8).

Results from this replication are shown in Figure 9.
Comparing Figures 7 and 9, one sees that the results
from this replication using pointillist grayscale images
match the pattern of results found using colored

pointillist images: once again, Bayesian repeated-
measures ANOVA identified the model including the
interaction term as the best model (BF10 ¼ 2.289 3

1010), and including the interaction term increased the
likelihood across matched models (BFinclusion ¼ 8.075).

Still, despite using contrast-matched images, we
again find that scrambled pointillist images derived
from objects produce more robust interocular sup-
pression than do scrambled pointillist images derived
from scene images (light red vs. light yellow bars in
Figure 9a). Evidently there remains some residual
difference between object and scene images that
survives the image processing steps summarized in
Figure 8: grayscale rendering, contrast normalization,
discrete spatial sampling, and dot location scrambling.
One such property is the luminance histogram sum-
marizing the incidence of different luminance values of
pixels within an image. The pattern embedded in a
luminance histogram will survive the image transfor-
mations shown in Figure 8, perhaps comprising the
residual responsible for the relative potency of scram-
bled pointillist objects compared to scrambled pointil-
list scenes (Figure 9a). The existence of this residual
would also underscore why the appropriate statistical
term is the interaction between image types (object and
scene) and image structure (unscrambled and scram-
bled).

Model comparison Analysis of effects

Models BF10 Effects BFinclusion

Seed image 55,867.154 Seed image 2.154 3 107

Dot placements 20.009 Dot placements 8099.7

Seed image þ dot placements 4.525 3 108 Seed image 3 dot placements 259.4

Seed image þ dot placements þ seed image 3 dot placements 1.174 3 1011

Table 1. Bayesian repeated-measures ANOVA results of BTs in Experiment 2.

Figure 8. Series of transformations for converting an image to a contrast-matched grayscale pointillist image. Resulting normal and

scrambled pointillist images (i.e., images in the rightmost two columns) were used for the replication of Experiment 2.
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Experiment 3: Durations for
pointillist image sequences to
regain perceptual dominance

In the first two experiments, we focused on the time
required for a simple target stimulus (i.e., a rotating
pinwheel) to gain dominance depending on the image
content of the CFS masker (objects vs. scenes). In
Experiment 3, we asked the complimentary question:
Does the time required for a pointillist image sequence
to achieve dominance when those sequences were
initially suppressed by the simple target stimulus
depend on the image content of the initially suppressed
CFS sequence? This question, in other words, is
formulated in the same way as earlier CFS studies of
processing outside of awareness.

Methods

Participants

The same 10 participants tested in Experiments 1
and 2 participated in Experiment 3.

Apparatus

Apparatus and stimuli were the same as in Exper-
iment 2.

Procedures

In Experiment 3, we changed the time course of
contrast change of the pinwheel target, the purpose
being to promote initial dominance of the target. Each
trial began with the appearance of the fusion stimuli
and fixation point, and the participant again pressed
the spacebar to initiate the sequence of events
illustrated in Figure 10. Initially, the pointillist image
sequence (the same as a CFS sequence in Experiment 2)
appeared but then 600 ms later the pinwheel target
appeared abruptly at full contrast (100%), which
usually triggered its immediate dominance. After its
appearance, the contrast of the pinwheel target
decreased smoothly, and the target completely disap-
peared after 9.4 s from its appearance. The decrease in
contrast of the target C at a given time t was
determined by the following formula: C(t)¼ log10(10�
9 3 (t� 0.6) ‚ 9.4). At the same time, its direction of
rotation changed unpredictably every few seconds—the
participant’s task was to press one of two arrow keys to
indicate the last perceived direction of rotation as soon
as the target became imperceptible. With this sequence
of stimulus events, participants could clearly perceive
the presence and rotation direction of the pinwheel
during the initial moments of the trial, but at some
point the pointillist CFS sequence achieved exclusive
dominance making it impossible to report rotation
direction. On a few occasions, participants failed to
perceive the pinwheel upon its immediate onset, in

Figure 9. Results from the replication of Experiment 2 using grayscale pointillist images. (a) The bar chart plots normalized

breakthrough times (BTs) averaged over all 10 participants (six of whom participated in the color version of Experiment 2), with error

bars denoting 95% confidence intervals. (b) Shift-plot graphs show normalized BTs for every trial aggregated from all participants.

Each dot represents one trial, black lines indicate 50th percentile, and gray lines indicate 10th and 90th percentiles.
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which case they pressed a designated key to abort that
trial.

Before formal data collection on this task, a practice
session was conducted to ensure that participants were
familiar with the display sequence and that they
understand the task.

Analysis

For Experiment 3, we separately analyzed the
number of trials where participants reported that the
pinwheel stimulus failed to obtain perceptual domi-
nance at the beginning (M: 20.10%, SD: 14.19%). Then
incorrect trials (M: 11.97%, SD: 7.41%) were rejected
from the remaining trials. In each condition, the
average time elapsing before the pinwheel stimulus
became invisible (time to suppression, ST) was divided

by each participant’s average STs in all conditions.
These normalized STs were used for further analyses.

Results and discussion

Average normalized STs are shown in Figure 11a,
and the STs of all incidences of the pointillist image
sequences regaining perceptual dominance are shown
in Figure 11b. Note that the total number of incidences
are different in each condition, because in some trials
the pinwheel target failed to obtain perceptual domi-
nance with abrupt onset. When analyzed by itself,
effect of interest in Experiment 3 would be the
interaction between the seed image and dot placements.
Bayesian repeated-measures ANOVA identified the
model with only seed image term as the best model
(BF10¼900.976; see Table 2), which is 2.816 times more

Figure 10. Procedures of Experiment 3. On each trial, two different image sequences were presented to the left and right eyes. In one

eye’s view, normal/scrambled pointillist images made from object/scene images were replaced at the rate of 9.375 Hz. In the other

eye’s view, a rotating pinwheel grating appeared at full contrast and then its contrast decreased over time. On most but not all trials,

the abrupt onset of the high contrast grating promoted its immediate dominance. The rotation direction of the pinwheel changed

unpredictably every few seconds, and participants reported the last direction of rotation perceived just before the grating succumbed

to suppression.
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likely than the model with the interaction term (ratio
between BF10 of the two models).

Next, we analyzed the data from Experiments 2 and
3 with experiment as a factor, as we were interested in
whether the impact of the image content was weaker in
Experiment 3. The effect of interest is the three-way
interaction among experiment (Experiments 2 and 3),
seed image, and dot placements. Bayesian repeated-
measures ANOVA identified the model with the three-
way interaction as the best model (BF10¼2.90631015),
and BFinclusion for the three-way interaction term was
1,525.940. The impact of the image content of CFS
masker was weak when those suppressed image
sequences were struggling to displace the pinwheel
target as the dominant one. These results suggest that
the different potency of interocular suppression we
found in Experiment 2 cannot be fully explained by the
differences in spatio-temporal energy. Pointillist image
sequences of objects had the same spatio-temporal
energy in both Experiments 2 and 3. If those properties

were responsible for increasing the breakthrough time

of the pinwheel target, they should decrease the time

for the object pointillist image sequences to regain

perceptual dominance.

In addition, we analyzed the number of occasions

when the pinwheel stimulus failed to obtain perceptual

dominance despite its abrupt onset in Experiment 3.

Bayesian repeated-measures ANOVA identified the

model with the interaction between the seed image and

dot placements as the best model (BF10¼ 391,351.114),

and BFinclusion for the interaction term was 50.750.

Importantly, this pattern of results mirrors the finding

from Experiment 2: CFS sequences comprising recog-

nizable object pointillist images exerted much longer

durations of interocular suppression in Experiment 2,

and those same image sequences were more likely to

resist the abrupt onset of the full-contrast pinwheel

target (Experiment 3).

Figure 11. Results of Experiment 3. (a) The bar chart shows normalized breakthrough times (BTs) averaged over all participants, with

error bars indicating 95% confidence intervals. (b) Normalized BTs for every trial aggregated from all participants are shown in shift-

plot format, where each dot represents one trial, black lines indicate 50th percentile, and gray lines indicate 10th and 90th

percentiles.

Model comparison Analysis of effects

Models BF10 Effects BFinclusion

Seed image 900.976 Seed image 894.793

Dot placements 0.305 Dot placements 0.296

Seed image þ dot placements 266.446 Seed image 3 dot placements 1.201

Seed image þ dot placements þ seed image 3 dot placements 319.963

Table 2. Bayesian repeated-measures ANOVA results of STs in Experiment 3.
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General discussion

CFS masks consisting of sequence of images
displaying different objects produce more robust
interocular suppression than do sequences of images of
different scenes, as evidenced by the durations of
suppression those masks impose on of a rotating radial
grating viewed by the other eye. This boost in CFS
robustness engendered by object-based masks is found
even when CFS arrays comprise pointillist-type por-
trayals of objects and scenes in which the RMS contrast
and spatial frequency content are approximately
equivalent. However, we found no evidence that
suppression durations of CFS masks themselves vary
with their image content: object- and scene-based CFS
arrays exhibited comparable durations of suppression,
although object-based CFS arrays were more resistant
to suppression in the first place.

How do these findings compare to those from
previous studies using CFS? To our knowledge, all of
those previous studies manipulated the figural charac-
teristics of the stimulus undergoing suppression by CFS
masking, not the figural characteristics of the CFS
mask itself. For example, Almeida et al. (2008) reported
that pictures of tools remained effective as visual
primes even when suppressed by CFS, whereas pictures
of animals were rendered ineffective as primes by CFS.
They attributed this category-specific effect of CFS to
the differential impact of interocular suppression on
dorsal versus ventral stream visual processing (cf. Fang
& He, 2005). Results from subsequent studies (Almei-
da, Mahon, & Caramazza, 2010; Sakuraba et al., 2012),
however, provided a somewhat different twist on that
conclusion by focusing on low-level surface and shape
characteristics of visual images (e.g., elongation) that
distinguish tools versus animals. These are just a few
examples of the multiple studies that have yielded
mixed results concerning the propensity for certain
categories of visual targets to escape CFS masking
more quickly than control stimuli. Comprehensive
reviews of those studies are provided by Ludwig and
Hesselmann (2015) and by Moors et al. (2016). Our
Experiment 3 is somewhat comparable to those earlier
CFS studies in that we did ask whether STs differed for
pointillist image sequences of objects compared to
pointillist image sequences of scenes, and we found no
differences between those two categories of pointillist
animations. We did, however, observe that pointillist
image sequences portraying objects were more resistant
to initial suppression than were pointillist image
sequences of scenes. This is a potentially revealing
finding that we return to later in this discussion.

What about the results of Experiments 1 and 2,
where we adopted the complimentary approach of
manipulating the characteristics of the arrays of images
comprising the CFS mask that induced suppression? As

Figures 2, 7, 9, and 11 document, we do find robust
differences in the propensity for object- versus scene-
based CFS animations to maintain suppression of a test
target. However, it is not straightforward to compare
those results to findings from the earlier CFS studies of
selective stimulus processing outside of awareness. For
one thing, earlier studies have presented a single
category, unchanging exemplar to one eye for the entire
duration of a trial, a procedure that allows time for
accumulation of information about that particular
suppressed exemplar. With our technique, a given
category condition involved rapid changes in the
exemplars of that category, minimizing accumulation
of information about any single target exemplar during
a trial. We made no effort to constrain the particulars
of the exemplars comprising a given object-based CFS
(e.g., images could include graspable, nongraspable,
animate, or inanimate exemplars), nor were constraints
placed on the particulars of the exemplars of the scenes
(e.g., man-made scenes, urban vs. natural landscapes).
In other words, we created those image sequences
purposefully to focus on global properties that
potentially distinguish objects from scenes, without
reference to the specific features or affordances that
define a given image. Moreover, we employed only a
single type of test figure in Experiments 1 and 2 (i.e., a
rotating radial grating). We purposefully did that for
two reasons: (a) to minimize potential confusion on the
part of participants about what they might see upon the
target’s emergence from suppression, and (b) to create
a forced-choice response task (CW vs. CCW rotation)
to be performed by participants as a proxy for simply
deciding when the target was visible. It is reasonable to
wonder, however, to what extent the object/scene
differences in CFS potency might vary depending on
the nature of the target being suppressed.

Turning to our results themselves, why do CFS
animations comprising object exemplars produce lon-
ger durations of interocular suppression than do CFS
animations comprising scene exemplars? This was
found with unmanipulated color images of objects and
scenes (Figure 2), pointillist versions of those images
(Figure 7), and contrast-matched grayscale versions of
those pointillist images (Figure 9). What empowers
CFS comprised of images of objects relative to CFS
comprised of images of scenes?

To tackle that question, we first turned to the
literature on object and scene recognition and its
dependence on low-level features, specifically spatial
frequency (Morrison & Schyns, 2001; Schyns & Oliva,
1997). For the kind of viewing situation we have
created—different images presented every 100 ms with
no explicit identification task—a number of lines of
evidence suggest that images of objects and of scenes
are processed in a coarse-to-fine manner, with low
spatial frequency signals predominating with brief
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exposures (reviewed in Schyns & Oliva, 1994). As seen
in Figure 6a and 6b, the low spatial frequency regions
of the spectra of unscrambled pointillist images exhibit
a localized dip in the power associated with those
images, centered at approximately 12.5 cpi; no such dip
is seen in the scrambled pointillist images. On the face
of it, this localized reduction in contrast energy seems
paradoxical because scrambled images are, in fact, less
effective compared to their unscrambled counterparts
when it comes to exerting CFS. Moreover, this dip in
power is comparable in object and in scene images, yet
object images beget more robust CFS. In other words,
if low spatial frequencies were advantaged in our CFS
arrays, we would expect an entirely different pattern of
results from what is seen in Figure 9. We are not saying
that our findings disagree with a coarse-to-fine analysis
when it comes to processing of objects and scenes, but
differences in spatial frequency energy alone do not
account for the differential efficacy of those two
categories of images when they comprise CFS masks.
In other work using different CFS sequences, we are
currently exploring this peculiar pattern of results.

As another possible explanation for the robustness
of interocular suppression produced by object-based
CFS masks compared to scene-based CFS masks, one
could suppose that (a) visual information about objects
and about scenes is processed within different networks
of visual areas, and (b) that those networks are not
equally impacted by the competitive neural interactions
responsible for interocular suppression. From human
brain imaging studies, there is good evidence for the
first supposition. As elaborated elsewhere (Harel et al.,
2013; Kamps et al., 2016; Kravitz et al., 2011), there
appear to exist gradients of object and spatial layout
information formed by interactions within areas in the
ventral and parietal lobe that differ in neural respon-
siveness to objects and to spatial layout. But as for the
second supposition, previous brain imaging studies
using object images and place images as rival stimuli
found robust interocular suppression in neural activity
in both object- and scene-selective areas within ventral
stream regions selectively activated by those images
(Sterzer et al., 2008; Tong, Nakayama, Vaughan, &
Kanwisher, 1998). Perhaps a more fine-grained exam-
ination of neural activity during interocular suppres-
sion within the gradients now thought to distinguish
object and scene information might lead to refinement
of the conclusions from those two extant studies, both
of which used faces and houses as the ‘‘object’’ and
‘‘place’’ exemplars.

It is natural to ask whether the differential impact of
objects relative to scenes in terms of inducing inter-
ocular suppression might arise from systemic structural
differences between object and scene images. All of the
object images in the library we used contain a single
item whose surface regions are contiguous and appear

against a uniform background; the scene images, on the
other hand, typically comprise larger surface areas
defined by ground, sky, or sea, and those larger
surfaces tend to have subtler gradients of color and
shading compared to the surfaces comprising object
images. As a consequence, pointillist images portraying
objects, compared to scenes, tend to have more
discrete, colorful clusters of dots and clearer delinea-
tions between neighboring clusters. Perhaps, then, these
properties enhance the visual salience and/or recog-
nizability of objects, including pointillist images of
objects. Those differences would not necessarily be
reflected in the 2D spatial frequency amplitude spectra,
but they could emerge from image analyses that isolate
higher-order, structural characteristics supporting fig-
ure/ground segmentation and grouping, perceptual
operations engaged in natural viewing situations
whenever we focus on an object or more broadly take
in a scene.

To explore whether stimulus salience might offer an
explanation for our results, we tried deriving salience
maps using the technique developed by Itti and
colleagues (Itti, Koch, & Niebur, 1998; MATLAB
implementation by Harel, Koch, & Perona, 2007). This
is a bottom-up, data-driven model that derives metrics
of salience based on parallel computations within
topographic feature maps representing orientation,
color, and luminance in multiple spatial scales. But
with pointillist images, fine-scale visual information is
governed by visual properties of the dots themselves:
orientation information is dominated by the circular
apertures and the contrast information is strongly
dependent on the dots’ color and lightness values
relative to the uniform gray background. Consequent-
ly, the average salience map for objects looks no
different from the average map for scenes. When
viewing pointillist images, a person readily discounts
the saliency of visual properties associated with dots’
apertures once they realize that visual meaning is
embedded in the patterns of the dots. Bottom-up, data-
driven models of salience, however, are not designed to
include this kind of top-down information. (This is not
to say, however, that attention is not a cause of the
relative robustness of objects compared to scenes, a
point we return to below.)

Next, we considered whether images of objects might
be more recognizable than images of scenes when each
image was viewed for a fraction of a second in a steady
stream of different images. From earlier work on
binocular rivalry, we know that a recognizable stimulus
enjoys greater predominance than does an unrecog-
nizable one (Yu & Blake, 1992; Baker & Graf, 2009). If
CFS potency, too, is influenced by recognizability, one
could surmise that objects are more potent suppressors
because they are easier to recognize than are scenes.
The original images used in our study were selected
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from widely used image libraries of objects and of
scenes, but we did not assess image recognition under
the particular conditions of our experiments. However,
we did manipulate those images in ways that plausibly
impact the clarity of their content (i.e., converting the
colored pointillist images into grayscale pointillist
images). If that manipulation degrades recognizability,
we would predict that grayscale object- and scene-based
CFS sequences should be less effective than their color
counterparts and, as a consequence, should yield
shorter BT durations. That pattern of results would not
be evident from comparison of the bar charts in Figures
7 and 9 because the BT durations in those figures are
normalized for each observer and experiment and,
moreover, the RMS contrasts differed between the
color images and the grayscale contrast-matched
images. So, instead, we analyzed the raw BT values
produced by the object- and scene-based CFS se-
quences (Figure 7) to BTs measured in an exact
replication of Experiment 2 using grayscale images
identical in RMS contrast to the color images. We also
tested the same 10 participants who performed the
color pointillist task.

The raw BTs from those two sets of results clearly
reveal the predicted pattern of results (Figure 12a):
average BTs for colored, pointillist images of objects
and of scenes were ;20% longer than were BTs
produced by grayscale images identical in RMS
contrast to their colored counterparts. Loss of color
weakens the potency of images comprising CFS masks.
Another revealing trend found in the raw BTs emerges

from comparison of intact and scrambled grayscale
images (Figure 12b). For grayscale scene images, BTs
between intact and scrambled sequences are not
significantly different (BF10 ¼ 0.326), whereas for
grayscale object images the BT differences between
intact and scrambled remain significant (BF10¼ 3.509).
This is consistent with the hypothesis that the
recognizability of scene images is more vulnerable to
loss of color than is the recognizability of object
images.

Whatever structural properties empower object-
based CFS relative to scene-based CFS, those proper-
ties appear to be ineffective when it comes to hastening
a transition from suppression to dominance: dynamic
object CFS sequences exhibit the same suppression BTs
as dynamic scene CFS sequences (Experiment 3). In
this respect, the structural differences between object
and scenes do not behave like contrast (e.g., Brascamp,
Klink, & Levelt, 2015), luminance (e.g., Levelt, 1965),
and spatial frequency complexity (e.g., Baker & Graf,
2009), early level visual properties that reliably
modulate suppression durations. Returning to a point
made above, the fact that object-based CFS sequences
exert their greater strength when they are dominant but
not when they are suppressed leads us to wonder
whether their enhanced robustness may arise from their
stronger engagement of visual attention, which is
known to boost the strength of images during their
dominance phases (Dieter, Brascamp, Tadin, & Blake,
2016; Ling & Blake, 2012; Stein et al., 2012).

Figure 12. Results of the replication using grayscale pointillist images. (a) Each dot plots the average breakthrough time (BT) for a

participant measured for a mask type (normal object or normal scene pointillist images). The x- and y-axes represent BTs in the color

(Experiment 2) and in the grayscale Experiments, respectively. Note that (a) BTs for object sequences are generally longer than BTs for

scene sequences, and (b) that nearly all BT values fall below the unity line (i.e., are longer for color vs. grayscale image sequences). (b)

Each dot plots the average BT for a participant measured for a mask type (object or scene pointillist images) in the grayscale

Experiment. The x- and y-axes represent BTs for the normal and scrambled pointillist image sequences, respectively. Note that yellow

outlined dots (BTs for the scene pointillist image sequences) are on or near the unity line, showing that BTs are similar for the normal

and scrambled grayscale scene pointillist image sequences.
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There are certainly additional experiments one could
envision for studying in more detail this difference
between dynamic arrays of objects and dynamic arrays
of scenes as potent CFS maskers. For instance, the
pointillist image technique could be used to create
multiple, independent versions of a given object or a
given scene generated from a single seed image, thereby
allowing one to portray a single exemplar (or it’s
scrambled counterpart) for an entire trial. Would such
a dynamic mask be as effective as the series of images
randomly selected from a category set? One could also
determine what happens when a CFS mask consists of
exemplars drawn from both of those two categories.
Would that hybrid mask form a diluted version of a
pure object-based CFS masker in terms of its suppres-
sive potency? Do pointillist images of natural scenes
(e.g., a forest) generate different levels of suppression
than do pointillist images of scenes portraying man-
made structures (e.g., urban landscapes) and, if so, are
those differences traceable to image structure? What is
found using CFS masks in which image recognition is
degraded systematically by varying the density and/or
sizes of the apertures defining the pointillist dots of
color or luminance? Do pointillist images of upright
faces induce stronger CFS masking than do masks
comprised of inverted faces (Jiang et al., 2007)?
Answering those and related questions is beyond the
more modest aim of this paper, which was to introduce
the pointillist technique for creating CFS sequences.

Going beyond interocular suppression and CFS, we
foresee that that pointillist images could also be useful
in studying other visual tasks where matches among a
succession of images are required over time (apparent
motion) or over space between the two eyes (left- and
right-eye images in which retinal disparity supports
stereopsis). The pointillism technique has value because
it does a good job of approximately matching the
spatial frequency content of diverse images drawn from
different stimulus categories while preserving configural
information that gives those images visual meaning. We
can envision utilizing pointillist images for training and
testing generalization of image categorization by
convolutional neural networks (CNNs). A recent study
has shown that CNN models trained only on local
features, without regard to their global configuration,
rival the classification rates of ImageNet trained CNNs
(Brendel & Bethge, 2019). Given our ability to
seamlessly recognize the objects in a Seurat painting, a
CNN capable of classifying pointillist images, devoid of
local feature differences, would bolster current efforts
to develop CNNs that mimic the human biological
visual system (Cichy, Khosla, Pantazis, Torralba, &
Oliva, 2016; Khaligh-Razavi & Kriegeskorte, 2014;
Yamins & DiCarlo, 2016).

Keywords: continuous flash suppression, interocular
suppression, pointillism, image processing, objects, scenes
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