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a b s t r a c t

Our visual system can restore information missing within the portion of the retinal image corresponding
to the blind spot where the optic nerve exits the eye. Previous studies of the properties of filled-in sur-
faces at the blind spot have found similarities and dissimilarities between filled-in and real surfaces and
have therefore not provided a consistent view of the characteristics of the filled-in surface. First, we
investigated whether filling-in utilizes a contour integration mechanism. Gratings with collinear lines
filled in the blind spot more effectively than those both with orthogonal lines and without any line, sug-
gesting that collinear facilitation underlies the filling-in of the blind spot. Second, the dynamics of binoc-
ular rivalry was examined by comparing the dominance duration distributions of filled-in and real
surfaces. The results indicated that the strength of the filled-in surface was attenuated compared to that
of the real surface during rivalry. Lastly, we tested whether travelling waves of dominance in rivalry could
occur at the blind spot. The travelling waves could propagate through a hole only at the blind spot, sug-
gesting that the filled-in surface helps perceptual waves to travel across the blind spot. These results sug-
gest that the filled-in surface shares a common mechanism via a horizontal connection but that it has
weak strength to suppress the opposite eye during binocular viewing.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The optic nerve exits the retina at the optic disk, creating a cir-
cumscribed area devoid of photoreceptors. Ordinarily we do not
perceive this blind spot because it is perceptually filled in by infor-
mation from the other eye as well as by information from neigh-
boring regions around the blind spot itself (Murakami, 1995;
Ramachandran, 1992). This filling-in process is rather remarkable
given the relatively large size of the blind spot, which encompasses
an ellipse with long and short axes subtending about 6� in width
and 8� in height (Armaly, 1969).

Neurophysiological studies have demonstrated that the filled-in
information is not merely conceptually noted (Dennett, 1992) but
is represented by lateral propagation of neural activity (Komatsu,
Kinoshita, & Murakami, 2002; Matsumoto & Komatsu, 2005;
Pessoa, Thompson, & Noë, 1998). Due to the active propagation
of neural activity from the regions surrounding the blind spot, cor-
tical neurons that have receptive fields corresponding to the blind
spot can respond to stimulation imaged within the blind spot
region. The consequences of the blind spot, in other words, are
minimized by neuronal filling-in (Awater et al., 2005; Tripathy
et al., 1995).

Previous studies of the characteristics of surface completion
within stimuli outside of the blind spot have concluded that
filled-in surfaces are comparable to what one would expect to
see based on the stimulus actually presented (Komatsu, 2006;
Lleras & Moore, 2006; Shimojo, Kamitani, & Nishida, 2001).
However, whether or not this is true in the case of the blind spot
remains debatable. Murakami (1995) showed that adaptation to
visual motion within the blind spot generated a motion aftereffect
(MAE) at the corresponding location of the other eye, albeit a
weaker MAE than that experienced when adapting and test stimuli
were both presented to the same eye. In addition, He and Davis
(2001) showed that when a stimulus presented around the blind
spot induced filling-in, the visibility of a stimulus in the opposite
eye was reduced as compared to when the blind spot was not filled
in. Those authors suggested that the filled-in surface at the blind
spot contributes to binocular rivalry. However, other studies imply
differences between the filled-in surface at the blind spot and a
corresponding, real surface. Cumming and Friend (1980) found
that filled-in stripes at the blind spot were not strong enough to
produce tilt aftereffects. Maertens and Pollmann (2007) also dem-
onstrated that the performance of an illusory curvature discrimina-
tion task at the blind spot was worse than at a corresponding
eccentricity outside the blind spot.

In the present study, the characteristics of the filled-in surface
at the blind spot are investigated further by comparing a filled-in
surface to a real surface using several different phenomena in an
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effort to shed light on how a filled-in surface is represented within
different visual contexts. Experiment 1 tested whether the collin-
earity of stimuli facilitates filling-in. Experiment 2 examined how
the filled-in surface at the blind spot contributes to binocular riv-
alry. Lastly, Experiment 3 investigated whether percept changes
can propagate through the blind spot with the aid of the filled-in
surface during rivalry. Sinusoidal gratings rectangular in shape
were used as stimuli in all three experiments, but different exper-
imental paradigms were used across the three experiments.

2. Experiment 1: effects of collinearity and orientation
differences on filling-in at the blind spot

To fill in the blind spot, stimuli need to be presented to both
sides of the blind spot. A minimal stimulus length (0.33–1.5�) is re-
quired to fill in the gap (Abadi, Jeffery, & Murphy, 2011; Kawabata,
1983; Spillmann et al., 2006). According to Field, Hayes, and Hess
(1993), elements are more easily integrated into a contour if they
have small orientation differences. Moreover, when the orientation
difference is held constant, elements collinearly aligned to the path
of a contour are more likely to be integrated into the contour than
are orthogonally aligned elements. This contour integration mech-
anism is critical for figure-ground segregation (Geisler et al., 2001;
Grossberg & Mingolla, 1985). Experiment 1 examined whether the
results found in contour integration can be applied to the blind
spot by measuring the minimal stimulus length needed to promote
filling within the blind spot. Specifically, we investigated whether
the minimal stimulus length for filling-in differed depending on
collinearity and orientation differences.

2.1. Material and methods

2.1.1. Observers
Six graduate students of Yonsei University including the first

two authors participated in this study. All had normal or cor-
rected-to-normal vision. Every aspect of this study was carried

out in accordance with the Institutional Review Committee of
Yonsei University. Written, informed consent was obtained from
each observer (except the authors) prior to participation.

2.1.2. Apparatus
Stimuli were created using the Psychophysics Toolbox of MAT-

LAB (Brainard, 1997; Pelli, 1997). To present different stimuli to the
two eyes separately, two monitors (Samsung SyncMaster T220; re-
fresh rate, 60 Hz; resolution, 1680 � 1050) and a mirror stereo-
scope were used. Owing to the stereoscope, observers could
maintain both eyes open, even for monocular presentation of stim-
uli. Observers steadied their heads using a chin-and-forehead rest,
and the viewing distance was 80 cm. At this distance, one pixel
subtended approximately 0.024�.

2.1.3. Blind spot measurement
To measure the size and location of the blind spot for each indi-

vidual, we employed two tasks, one of which located the center
(Fig. 1A and B) of the blind spot and the other which estimated
the circumference of the blind spot (Fig. 1C and D). A cross sur-
rounded by a circle of dashes was used for fixation. The fixation
was placed vertically in the middle of the video screen (about
12.6� from the top) and 6� away from either the left or right edge
of the display depending on the blind spot eye (dominant eye be-
cause the blind spot was always measured in the dominant eye).
The fixation cross was seen by both eyes, but the dashes were
shown interocularly to facilitate binocular alignment. Neighboring
dashes were shown to different eyes. First, a small, white dot 0.2�
in diameter was moved along a horizontal path extending from the
fixation cross at a speed of 1.2 deg/s (Fig. 1Br). The observer
pressed the ‘space’ bar whenever the moving dot first disappeared
(i.e., entered the blind spot) and then again when the dot first reap-
peared (i.e., emerged from the far side the blind spot). After the key
press, the dot reversed its direction and the same procedure was
followed for the motion toward the fixation mark. This cyclic pro-
cedure continued until two consecutive measurements at the same

Fig. 1. The blind spot measurement procedure of the center (A and B) and end points at the twelve test locations (C and D). In this figure, the right eye blind spot
measurement is described. For the left eye blind spot, everything was mirrored. (A): Observers pressed the space bar whenever a white dot first disappeared and re-appeared
again outside the blind spot, after which the dot reversed its direction. (B): The process described in (A) was repeated in the order of (r, s, and t) and the center of the blind
spot was determined (filled circle). (C) Twelve test locations were measured in turn starting from 0� (indicated by the white radial line) and proceeding counterclockwise
(right eye) or clockwise (left eye). Observers adjusted the length of the radial line to the length at which the line just became visible or invisible. (D) By connecting the twelve
measured points, the blind spot indicator was created. A red cross (a large gray cross in the blind spot) was imposed on the blind spot indicator to ensure stable fixation. Note
that only the red cross was present during the experiment.
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location differed by less than 0.3�. The criterion of 0.3� had to be
satisfied for both sides of the blind spot. Once two end points of
the blind spot on the horizontal extension of the fixation cross
were measured successfully, the dot was moved vertically along
a line which went through the center between the two points
denoting the horizontal margins of the blind spot (Fig. 1Bs). The
vertical extent of the blind spot was obtained using the same
method and the same criterion as that used for assessing the blind
spot’s horizontal extent. After finding the vertical center, the dot
was moved horizontally along a line passing through the center
of the vertical meridian (Fig. 1Bt) and the horizontal meridian
of the blind spot was measured. The intersection between the
horizontal and vertical meridians defined the center of the blind
spot.

To define the circumference of the blind spot, we used a proce-
dure whereby a thin line (0.2� width) slowly increased in length
starting at the center of the blind spot (as defined above) by press-
ing a key until the observer first saw it emerge from the blind spot
and by pressing another key which caused the line’s length to
begin shortening until the observer released the key to denote its
disappearance. This cycle continued until the observer’s key
presses reliably located this point of visible/invisible transition.
This procedure was repeated for 12 different radial paths from
the center of the blind spot (Fig. 1C). Ten of the twelve end points
were test locations and two were used as reference locations. This
procedure started with the vertical upward bar (0�) which was the
reference for the vertical conditions. The next step was a horizontal
bar toward fixation (90�) which was the reference of the horizontal
conditions. The remaining radial lines grew out to spots where the
minimal stimulus lengths were to be measured (145�, 170�, 180�,
190�, 215�, 235�, 260�, 270�, 280�, and 305�). Finally, the end points
of those lines were connected by straight lines to form a polygon
shape defining the borders of the blind spot (Fig. 1D). The polygon
shape (blind spot indicator) was painted white, 0.6� inside the bor-
ders of the blind spot, and its luminance was 100.30 cd/m2. Inside
the polygon shape, a red cross was placed to ensure stable fixation
(Araragi & Nakamizo, 2008). The two arms of the red cross were
the same in length and the length was the shortest radius of the
blind spot. Their width was 0.1�. The blind spot indicator was used
only once in the beginning of an experiment to confirm the accu-
racy of the boundary, but the red cross was always presented
throughout the experiment. The average distance from the fixation
point to the center of the blind spot for six observers was 14.72�.
The average height and width of the blind spot was 6.64� and
5.83�, respectively, values similar to those reported by Armaly
(1969).

2.1.4. Main experiment
2.1.4.1. Stimuli. The experimental display consisted of the fixation
point and the test gratings (Fig. 2A). Test stimuli were presented
only to the blind spot eye (Fig. 2A). Sinusoidal gratings of rectangu-
lar shape were used as test stimuli to measure the minimal stimu-
lus length for filling-in of the blind spot (Araragi & Nakamizo,
2008; Tripathy et al., 1995). The width of the gratings was defined
as the shortest radius of the individually measured blind spot for
each observer, and it ranged from 2� to 2.76�. The length of a refer-
ence grating was 3.6� from the edge of the blind spot. The grating’s
spatial frequency was 2.5 cycles per width of a grating. The back-
ground luminance was 52.02 cd/m2. The Michelson contrast of
the test grating was 99.77%.

2.1.4.2. Design. There were three within-subject variables. The first
was the type of grating which filled in the rectangles: this was
either collinear or orthogonal to the orientation of the rectangles
(Fig. 2A). The second variable was the orientation difference be-
tween the reference and test gratings: this difference was 0�,
±10�, or ±35�. The maximum orientation difference was set to
35� according to Kawabata (1982). In that study, a dotted line
did not fill in the blind spot above an orientation difference of
35�. The third variable was the location of the reference grating:
it was either 0� or 90�. Accordingly, the overall configuration of
the experimental stimulus was vertical or horizontal (Fig. 2A).
We used both vertical and horizontal displays because there is
an anisotropy in the minimal stimulus length when filling in the
blind spot with vertical vs. horizontal lines (Araragi & Nakamizo,
2008). Also, it would be unclear as to whether the consequent ef-
fect was due to the orientation or collinearity of the grating if only
one of the conditions were used, either the horizontal or the verti-
cal condition, as the collinear grating of the horizontal condition
was horizontal and the collinear grating of the vertical condition
was vertical. All of the conditions were randomized in a block,
and there were eight blocks, resulting in a total of 160 trials (2
gratings � 5 orientation differences � 2 types of display � 8
blocks = 160 trials). There were two types of blocks depending on
the initial length of the test gratings. It was 0� in one block and
4� in the other block. Each block was repeated twice and the order
of the series was counterbalanced across observers.

2.1.4.3. Procedure. At the beginning of the main experiment,
observers were shown two examples of the filled-in configuration
so that they could judge whether the subsequent experimental dis-
plays were perceived as filled in based on these examples. For the
examples, a 10� collinear test grating and a 35� orthogonal test

Fig. 2. The stimuli and results of Experiment 1. (A) A schematic diagram of the test locations and sinusoidal gratings of rectangular shape is shown to help clarify the results
(not drawn to scale). Collinear test gratings are shown in the vertical condition and orthogonal gratings are shown in the horizontal condition. There were five test locations
for each horizontal and vertical condition. However, only three of them are shown here for each condition, collapsing the same orientation differences (e.g., ±10�). The black
(vertical condition) and the white (horizontal conditions) dotted bars indicate the original test locations before the collapse. (B): The results of Experiment 1. Error bars
indicate the s.e.m.
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grating of the vertical condition were used. These examples con-
sisted of combinations of collinear or orthogonal gratings with
two different orientation differences. Also, the distance of the stim-
ulus segments from the fovea within a display was similar in the
vertical condition, leading to a more confident filling-in experi-
ence. Each test grating was 6� in length to facilitate filling-in across
the blind spot. After confirming that the two gratings were per-
ceived as connected, the observers proceeded to the main
experiment.

The beginning of each trial involved presentation of the fixation
cross, a frame of dashed bars, the blind spot indicator, and the red
cross. Observers checked fixation to insure that the dashed bars
were aligned to form a circle around the fixation cross. They also
made sure that the blind spot indicator was invisible.

While maintaining fixation, observers pressed the ‘space’ bar
and the blind spot indicator disappeared, leaving only the red
cross. A reference and a test grating were then presented at the
previously measured edges of the blind spot. We used the method
of adjustment to measure the minimal stimulus length. Observers
adjusted the length of the test grating until they perceived a filled-
in grating. When they pressed either the ‘1’ or the ‘2’ key, the
length of the test grating either decreased or increased by 0.02�,
respectively. When the reference and the test grating were per-
ceived as a connected grating, not as two discrete gratings, the
observers pressed the ‘space’ bar to move onto the next trial. There
was no time limit, and observers modified the length of the test
grating back and forth to find the minimal stimulus length that just
filled in the blind spot. The length of the test grating at which the
reference and the test grating were perceived as one was taken as
an indicator of how easy filling-in occurred across the gap: shorter
test gratings indicated that the filling-in was easier. Before moving
onto the next trial, the observers were instructed to check their fix-
ation. If they saw the any section of the red cross protruding from
the blind spot, they were encouraged to check their fixation again.

2.2. Results and discussion

The sizes and the shapes of the blind spot varied among observ-
ers, and the criterion for complete filling-in could also differ across
observers. Thus, the minimal stimulus length was normalized be-
fore the analysis. The normalized minimal stimulus length (Mini-
mal Length Index: MLI) was defined in the following way:

MLI ¼measured length=R

Here, R indicates the individually measured radius of the blind spot.
We used a horizontal radius when we normalized the measured
lengths in the horizontal displays and used a vertical radius for
those in the vertical displays. We used a different radius due
to the known anisotropy in the shape of the blind spot (Armaly,
1969).

The results of the main experiment are shown in Fig. 2B. In the
following analyses, we report Huynh–Feldt corrected p values. A
repeated-measures ANOVA showed the main effect of collinearity.
Collinear gratings (Mean MLI: 0.66) filled in the blind spot with a
shorter minimal stimulus length than the orthogonal gratings
(Mean MLI: 0.91; F(1,5) = 17.59, p < .01). The main effect of the ori-
entation difference was also significant (F(2,10) = 10.11, p < .05),
indicating that a greater orientation difference required a larger
MLI. The MLIs of the vertical and horizontal displays were not sig-
nificantly different (F(1,5) = 0.80, p = .41) and the data were col-
lapsed for the subsequent analyses. There was no significant
interaction between the variables.

Paired-sample t-tests were performed to determine which spe-
cific conditions showed statistically significant differences. The MLI
of the collinear condition was significantly different from the
orthogonal condition in all orientation difference conditions (0�:

t(5) = 5.70, p < .01; 10�: t(5) = 4.64, p < .01; 35�: t(5) = 2.66,
p < .05). The MLIs of the orientation differences differed from each
other only when the grating was collinear (0–10�: t(5) = 3.80,
p < .05; 0–35�: t(5) = 4.78, p < .01; 10–35�: t(5) = 3.49, p < .05). This
result was not significant or marginally different when the grating
was orthogonal (0–10�: t(5) = 1.54, p = .19; 0–35�: t(5) = 2.11,
p = .09; 10–35�: t(5) = 2.44, p = .06).

Additionally, we tested whether collinear gratings facilitated
the filling-in process or orthogonal gratings hindered it to produce
the main effect of collinearity. We tested an additional condition in
which we presented a rectangle without gratings (solid condition).
Repeated-measures ANOVA showed that the collinear condi-
tion had significantly shorter MLIs than the solid condition
(F(1,3) = 19.01, p < .05). However, the MLIs of the orthogonal and
solid conditions were not significantly different (F(1,3) = 0.07,
p = .81). These results indicated that the difference observed
between the collinear and orthogonal conditions was due to collin-
ear facilitation.

In summary, we found that the effects of collinearity and the
orientation difference apply to the blind spot region. The collinear
grating filled-in the blind spot more effectively than did the
orthogonal grating, consistent with the stronger contour integra-
tion of collinear Gabor-patches (Field, Hayes, & Hess, 1993). Also,
two separately presented gratings appeared to be connected more
easily when their orientation difference was smaller. These results
suggest that the filling-in process at the blind spot follows rules
that are similar to those in both the contour integration of Gabor
patches (Field, Hayes, & Hess, 1993) and in amodal completion
(Kellman & Shipley, 1991).

3. Experiment 2: temporal dynamics of filled-in and real
surfaces during binocular rivalry

The results of Experiment 1 do not involve a direct comparison
of completion within the blind spot and completion within a re-
gion outside the blind spot. Thus we are unable to say to what ex-
tent the filled-in surface at the blind spot differed from the quality
of filling-in that would be observed outside the blind spot. It is pos-
sible, however, to compare the blind spot and a normal region
using binocular rivalry when both regions can be tested with the
same stimulus.

Several studies have demonstrated that the filled-in surface
represented at the blind spot can compete with a real surface
(He & Davis, 2001; Shin, Jung, & Chong, 2007; Tong & Engel,
2001). For example, He and Davis (2001) found that a filled-in ra-
dial grating presented at the blind spot competed with a circular
grating in the opposite eye. However, it has yet to be investigated
whether the strength of the filled-in surface at the blind spot is dif-
ferent from that of a real surface.

Tong and Engel (2001) found that the mean dominance dura-
tion of a filled-in surface was shorter than that of the real surface
during rivalry, in which the filled-in surface at the blind spot com-
peted with the real surface of the opposite eye. Shorter dominance
durations associated with the filled-in surface at the blind spot im-
plied that the strength of the filled-in surface was weaker relative
to the opposite eye stimulus. However, a comparison between eyes
is not appropriate because eye dominance is an important factor in
determining rivalry phase durations (Collins & Blackwell, 1974).
Instead, to study the effect of filling-in on binocular rivalry, it is
necessary to compare dominance durations on a filled-in surface
and on a real surface both viewed by the same eye. In the present
experiment, we tested whether there were dominance differences
between a filled-in and a real surface in an effort to understand the
mechanism of the dominance duration difference found by Tong
and Engel (2001).
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3.1. Materials and methods

3.1.1. Observers
Four observers, including the authors, participated in this

experiment. All had normal or corrected-to-normal vision.

3.1.2. Apparatus and stimuli
This experiment used the same settings and software as those

used in Experiment 1. The blind spot was always measured in
the dominant eye; we will refer to the non-dominant eye as the
opposite eye. The fixation cross appeared 8.4� from the top and
7.2� from the left or the right edge of the display depending on
the blind spot eye. Examples of the stimuli used in this step are
shown in Fig. 3. The rival stimuli were two, orthogonally oriented
sinusoidal gratings of rectangular shape with a spatial frequency of
3.5 cpd; the contours of the two rival gratings were oriented 45�
clockwise and counterclockwise from vertical. The color of one
grating was red and the other green, to help observers distinguish
which one of these eccentrically viewed rival stimuli was domi-
nant at any given moment. The Michelson contrasts of the red
and the green gratings were 21.07% and 69.49%, respectively. This
contrast difference was necessary to equate the brightness of the
red and green colors. The length of the stimuli from each side of
the blind spot was 2.5�; thus, the total length of the stimuli was
the sum of 5� and the horizontal length of the blind spot. The total
length of a grating was identical in the non-blind-spot condition.
The width of all gratings was 2�. In pilot studies, dominance dura-
tions of the blind spot eye were too brief for stable reports of per-
ceptual state. Therefore, we had to reduce the strength of the
grating presented in the opposite eye. The size of the grating pre-
sented to this eye was reduced by removing the area of
2.5 � 0.5� from every corner of the grating (Fig. 3, opposite eye).
Note that although the strengths of the stimuli for the two eyes dif-
fered, the strength of stimulus within each eye remained constant
because we used the same stimuli within each eye. Because we
compared the conditions within each eye, the difference in the
strengths in our stimuli across eyes was not critical. To facilitate
binocular alignment, rectangular frames with a 0.24� thick line sur-
rounded the gratings. The distance between the frame and the

grating was 2�. The area for tracking percept changes due to rivalry
(tracking region, Fig. 3 opposite eye) was indicated by four small
dots (diameter of each dot was 0.36�). Observers tracked changes
in dominance between the rival gratings only within this region
to reduce the difficulty of tracking in the periphery. Each dot was
0.8� horizontally and 1.5� vertically away from the center of the
blind spot. These dots were always presented to the opposite eye
and were thus always visible.

3.1.3. Design
There were three within-subject variables. The first indepen-

dent variable was the rivalry location: this was at the blind spot
of the dominant eye or at the same eccentricity outside the blind
spot in the same eye. In the blind spot condition, the stimuli were
horizontally presented to both sides of the blind spot. For the same
eccentricity condition, the stimuli were presented 3� below the
blind spot and at the same eccentricity. The other two variables
were the orientation of the gratings (clockwise or counterclock-
wise) and the color (red or green) of the gratings. Each condition
was tested in a 90-s trial, resulting in a total of 8 trials (2 testing
locations � 2 grating tilts � 2 colors = 8 trials). The blind spot con-
dition and the same eccentricity condition alternated, and the
other variables were randomized across trials. The trials were
interleaved with a resting period of 2 min.

3.1.4. Procedure
Before the main experiment, the blind spot of each observer’s

dominant eye was measured using the same procedure described
in Experiment 1, except that 8 points were used instead of 12 to
draw a blind spot indicator. The boundary of the blind spot was
determined for the horizontal and vertical meridians, and the other
4 points were measured at ± 30� orientations from the orientation
of the gratings.

At the beginning of each trial, the fixation cross and the blind
spot indicator appeared so that observers could verify their fixa-
tion. The blind spot indicator disappeared after the fixation check.
Then, rival stimuli were presented to each eye and the observers
reported the dominant color percept inside the four dots for 90 s
by pressing the ‘1’ key for 45� clockwise and the ‘2’ key for 45�

Fig. 3. The stimuli of Experiment 2. (A) The blind spot condition. (B) The same eccentricity condition. In both conditions, the colors (red or green) and grating tilts (clockwise
or counterclockwise) of the sinusoidal gratings of rectangular shape differed across eyes. Different shades in the gratings indicate different colors. The color of a gray cross was
red, and it was presented in the center of the blind spot to ensure stable fixation.
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counterclockwise. Both keys were pressed or released together for
a mixed percept.

3.2. Results and discussion

The pattern of average mean phase durations and relative pre-
dominance in Fig. 4 suggests that the observers experienced rivalry
alternations in both the blind spot condition and the same eccen-
tricity condition. Average mean phase durations of all observers
in the blind spot condition (Fig. 4A, light gray) were 3735 ms
(s.e.m.: 818 ms) for the blind spot eye, 2023 ms (s.e.m.: 343 ms)
for the opposite eye, and 211 ms (s.e.m.: 129 ms) for the mixed
percepts. Average mean phase durations in the same eccentricity
condition (Fig. 4A, dark gray) were 5884 ms (s.e.m.: 1447 ms) for
the blind spot eye, 4240 ms (s.e.m.: 1186 ms) for the opposite
eye, and 231 ms (s.e.m.: 120 ms) for the mixed percepts. Fig. 4B
shows relative predominance, defined as the percentage of total
viewing time that the observers reported perceiving the blind-spot
grating only, the opposite-eye grating only or the mixed percepts
between the two gratings (Tong & Engel, 2001). Average relative
predominance values of all observers in the blind spot condition
(Fig. 4B, light gray) were 57.11% (s.e.m.: 2.33%) for the blind spot
eye, 38.52% (s.e.m.: 3.65%) for the opposite eye, and 4.37%
(s.e.m.: 1.76%) for the mixed percepts. Average relative predomi-
nance in the same eccentricity condition (Fig. 4B, dark gray) were
61.38% (s.e.m.: 3.54%) for the blind spot eye, 32.54% (s.e.m.:
4.37%) for the opposite eye, and 6.09% (s.e.m.: 2.59%) for the mixed
percepts. The mixed percepts were excluded from further analysis
because there were only small portions of mixed percepts during
rivalry. In addition, paired-sample t-tests on mixed percepts be-
tween conditions were not significant for the mean phase duration
(t(3) = .72, p = .53) or for the relative predominance (t(3) = 1.66,
p = .20).

A repeated-measures ANOVA of the mean phase durations
(Fig. 4A) did not show any significant main effect for eye
(F(1,3) = 9.85, p = .05) or condition (F(1,3) = 7.16, p = .08). In addi-
tion, there was no significant interaction between the eye and
the condition (F(1,3) = .15, p = .72). This result may appear to be
inconsistent with Tong and Engel (2001) in that it did not show
any mean phase duration difference across eyes. However, it
should be noted that we reduced the strength of the stimulus pre-
sented to the opposite eye by cutting four corners. Cutting the cor-
ners not only reduced the strength of the stimulus but also
changed the global shape that may influence the mean phase dura-
tions (Alais & Blake, 1999). Also, the blind spot eye was always the

dominant eye of each observer. A repeated-measures ANOVA of the
relative predominance (Fig. 4B) showed a significant main effect of
the eye (F(1,3) = 12.95, p < .05). The main effect of the condition
was not significant (F(1,3) = 2.91, p = .19).

Before further analysis, the data were normalized using the
individual baseline mean phase duration (p) of each eye for a com-
parison across conditions. This normalization process was also
done because alternation rates between binocular images varies
considerably among individuals (Aafjes, Hueting, & Visser, 1966),
making it impractical simply to average dominance values across
observers. The baseline mean phase duration was derived from
the average dominance duration for the same eccentricity condi-
tion. The average baseline mean phase duration of the blind spot
eye (mean: 3735 ms; s.e.m.: 818 ms) was marginally longer than
that of the opposite eye (mean: 2023 ms; s.e.m.: 343 ms),
t(3) = 3.19, p = .05.

Dominance durations measured for bistable stimuli such as an
ambiguous figure or binocular rivalry generally conform to a gam-
ma distribution (Blake, Fox, & McIntyre, 1971; Brascamp et al.,
2005; Fox & Herrmann, 1967; Levelt, 1967; Logothetis, 1998).
Thus, we fitted a gamma functions to the normalized data
(Fig. 5) and carried out the Kolmogorov–Smirnov test (K–S test)
to evaluate whether the duration distributions of the two condi-
tions were from the same continuous distribution. The individual
two-sample K–S tests for the opposite eye between the dominance
duration of the blind spot and the same eccentricity conditions
were significant for all observers (all p’s < .05; mean Kolmogo-
rov–Smirnov Z = 1.77). Meanwhile, the K–S test results for the
blind spot eye between the dominance durations of the two condi-
tions were not significant (p = .62, .50, and .20 each; mean Kol-
mogorov–Smirnov Z = 0.88) except for one observer, S3 (p < .01;
Kolmogorov–Smirnov Z = 1.64), whose percept alternated faster
than the percepts for the rest of the observers. His mean phase
duration of the dominant eye (i.e., the blind spot eye, 1.4 s) was
not particularly longer than that of the opposite eye (p = 1.2 s) as
compared to the other observers. As illustrated in Fig. 5B, the
shapes of the dominance duration distributions of the opposite
eye involved fewer short-duration events and more long-duration
events in the blind spot condition than in the same eccentricity
condition.

We found that filling-in of the blind spot influenced the distri-
bution of dominance durations in the opposite eye more than that
of the blind spot eye. This is consistent with Levelt’s second prop-
osition (Levelt, 1968; Mueller & Blake, 1989), which holds that
changing the stimulus strength of an eye affects the suppression

Fig. 4. (A) Average mean phase duration of each eye and a mixed percept depending on the condition. (B) Average relative predominance of the mean phase duration for each
eye and a mixed percept. Even when the stimulus was located at the blind spot, the filled-in surface at the blind spot could compete with the real surface of the opposite eye.
Error bars indicate the s.e.m.
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duration of the ipsilateral eye (i.e., the dominance duration of the
contralateral eye). Thus, the different mean dominance durations
and relative predominance reported in Tong and Engel (2001)
may originate from the increased dominance duration of the oppo-
site eye rather than from the decreased dominance duration of the
blind spot eye. This experiment showed that the filled-in surface at
the blind spot also contributes to binocular rivalry and that the re-
duced strength of the filled-in surface is reflected in the modulated
dominance duration distribution of the opposite eye.

4. Experiment 3: travelling waves through the blind spot

Travelling waves refer to the tendency for switches in rivalry
state to arise within a local region of a rival target and, then, to
spread in a wave-like fashion throughout the rest of that target.
These state transitions can be exogenously triggered by abruptly
increasing the contrast within one region of a suppressed stimulus,
thereby producing a travelling wave whose origin is under stimu-
lus control (Wilson, Blake, & Lee, 2001). In the present experiment,
we tested whether waves could travel over the blind spot. It is
known that waves can travel over a relatively small gap, but the ef-
fect of a trigger is weakened or abolished as the gap size increases
(Kang, Heeger, & Blake, 2009; Kim, Blake, & Lee, 2005; Wilson et al.,
2001). The size of the blind spot is much larger (6–8�; Armaly,
1969) than the size of the gap that blocks the spread of travelling
waves reported in those earlier studies (0.3–1.0�; Kang, Heeger, &
Blake, 2009; Wilson et al., 2001). Therefore, we felt it would be
interesting to discover whether waves can travel over the blind
spot with the aid of the filled-in surface. In addition, given that
travelling waves involve the propagation of cortical activity (Lee,
Blake, & Heeger, 2005, 2007), observing travelling waves at the

blind spot would elucidate the neural basis of the filling-in of the
blind spot.

Kang, Heeger, and Blake (2009) showed that travelling waves
could be studied by periodically presenting triggers at opposite
ends of two rival stimuli while observers simply track rivalry
occurring within a restricted region of those stimuli; evidence for
travelling waves is revealed by the entrainment of switches in
dominance within the monitored region. This method requires
observers to monitor only a small portion of the stimuli, a signifi-
cant advantage when using eccentrically viewed rival stimuli as re-
quired in this experiment.

4.1. Materials and methods

4.1.1. Observers
Eight observers including the authors participated in this exper-

iment. All reported normal or corrected-to-normal vision.

4.1.2. Apparatus
We used two CRT monitors (Samsung SyncMaster 2100MB; re-

fresh rate, 85 Hz; resolution, 1600 � 1200) in this experiment. As a
consequence of this change, the viewing distance was 60 cm and
one pixel was subtended by approximately 0.020�. Also, the lumi-
nance of the background was 31.76 cd/m2.

4.1.3. Stimuli
4.1.3.1. The fixation cross and gratings of rectangular shape. Exam-
ples of the stimuli are shown in Fig. 6. The fixation cross was the
same as in previous experiments, but the locations of the fixation
cross differed owing to the different design and monitors. The fix-
ation cross was located 14.32� from the top and 7.16� from the left

Fig. 5. Dominance duration distribution of each observer (S1–4) of the blind spot eye (A) and the opposite eye (B). The dominance durations were normalized by the
individual baseline mean dominance duration (p), the mean dominance duration of the same eccentricity condition. The bars represent the probabilities of the dominance
durations, and each of them was binned as 0.5p (solid bar: the blind spot condition; dashed bar: the same eccentricity condition). The curved lines indicate the fitted gamma
functions of the blind spot (solid line) and the same eccentricity (dashed line) conditions.
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or the right edge of the display depending on which eye’s blind
spot was tested in the blind spot condition. In the same eccentric-
ity condition, the fixation cross was located 19.10� from the left or
right edge and 3.58� from the top of the display to present the
same stimuli of the blind spot condition to the same eccentricity,
but not at the blind spot. The stimuli were presented vertically at
the location corresponding to the blind spot in the blind spot con-
dition or horizontally below the fixation with the same distance
used with the blind spot in the same eccentricity condition.

Gratings within a rectangular aperture were again used as stim-
uli. The width of the grating was set for each observer to be 75% of
the horizontal length of the blind spot. The length of the grating
was individually determined by the minimal stimulus length mea-
surement procedure. The same lengths and widths were used in
the same eccentricity conditions. The spatial frequency of the grat-
ings was 2.5 cycles per rectangle width, and the gratings were
tilted 45� clockwise or counterclockwise. The Michelson contrast
of the gratings was 74.29%.

4.1.3.2. Tracking region and a trigger. Because of the peripheral loca-
tion of the blind spot, it would be difficult to track the entire path
of the travelling waves, i.e., the technique used by Wilson et al.
(2001) in their original study of travelling waves. Instead, we used
stimuli, similar to those designed by Kang, Heeger, and Blake
(2009), and only local percepts were monitored (tracking region,
similar to Experiment 2). The tracking region was indicated by four
dots, two at the left and the other two at the right sides of the grat-
ing, and the diameter of each dot was 0.5� (Fig. 6A). The two dots

near the blind spot were presented 0.5� above or below the blind
spot, and the other two dots were presented 2� above or below
the dots near the blind spot. All configurations were rotated 90�
in the same eccentricity conditions.

The trigger was separated by 1� from the blind spot and was al-
ways presented on the side opposite that of the tracking region.
The width of the trigger was 1� and its contrast was abruptly in-
creased to 99.05% for 50 ms. The trigger also changed its phase
by 180� to make it more salient.

4.1.4. Design
There were four within-subject variables. First, the testing loca-

tion was varied: it was either at the blind spot or the same eccen-
tricity outside the blind spot. The second variable was whether or
not there were triggers: the no-trigger condition served as the
baseline to determine the time to trigger. These two variables were
tested in separate blocks. The baseline blocks preceded the trigger
blocks because we used the mean phase durations from the base-
line block to determine the timing of the contrast increment in the
trigger blocks. In addition, there was a condition in which the rival
stimuli were located at the same place as that used in the same
eccentricity condition, except now those rival targets contained ac-
tual gaps that matched the size of the blind spot (Fig. 6C); the gaps
were produced by setting the contrast of the rival stimuli to zero
within that gap region. Thus, there were 5 blocks in total. The other
two variables were the locations of the tracking region (above or
below the blind spot in the blind spot condition; peripheral or cen-
tral in the same eccentricity conditions) and the orientation of the

Fig. 6. Examples of stimuli in Experiment 3. (A) The blind spot condition with the trigger. (B) The same eccentricity condition. (C) The same eccentricity with a hole condition.
Note that the hole in the middle of the grating is not the blind spot but a blind-spot-sized mask.
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gratings (clockwise or counterclockwise). These two variables were
tested in separate trials and were randomized in a block. Each trial
lasted for 90 s. The trigger condition was repeated twice. Thus,
there were 32 trials in total (Baseline blocks (2 testing loca-
tions � 2 tracking locations � 2 grating tilts) + Trigger blocks (3
testing locations � 2 tracking locations � 2 grating tilts � 2 itera-
tions) = 32 trials). There was a 2-min rest period at the beginning
of each block and between each trial.

4.1.5. Procedure
First, the location of the blind spot of each observer’s dominant

eye was measured using the same procedure as that used in Exper-
iment 2. Next, the blind spot indicator was drawn as a circle in-
stead of a polygon in this experiment to facilitate filling-in. The
radius of the blind spot indicator was the shortest radius of the
blind spot. The length of the stimuli was then individually deter-
mined to produce filling-in. Observers adjusted the length of the
grating presented to the blind spot eye until filling-in was
achieved. This procedure was repeated four times, twice for each
grating tilt, and the average of these four measurements was used
in the main experiment.

Each trial began with presentation of the fixation mark, the
blind spot indicator, and the red cross; observers used this time
to confirm their fixation. After the fixation check, the indicator dis-
appeared, leaving only the fixation and red crosses. The orthogo-
nally oriented, dichoptic rival gratings were then presented, one
to the blind spot eye and the other to the opposite eye. In the trig-
gering blocks, the high-contrast trigger was presented for 50 ms to
the blind spot eye when the stimulus of the opposite eye was being
perceived for more than one third of its mean phase duration,
which was previously measured in the baseline blocks. The task
was to report the perceived orientation of the test gratings within
the tracking region. Observers pressed the ‘1’ key for a counter-
clockwise grating and the ‘2’ key for a clockwise grating for 90 s.
Both keys were pressed simultaneously to signify mixed percepts.

4.2. Results and discussion

First, the analysis of the dominance durations revealed approx-
imately equal periods of dominance for each eye’s rival stimulus
(mean dominance duration: 2929 ms; s.e.m.: 259 ms) and a low
proportion of a mixed percept (mean: 264 ms; s.e.m.: 104 ms).
There was no significant main effect of the test locations, eye, or
the existence of a trigger on the mean dominance duration. Also,
the relative predominance was fairly even (mean relative predom-
inance of each eye: 46.26%; s.e.m.: 1.29%, mean relative predomi-
nance of a mixed percept: 3.74%, s.e.m.: 1.29%).

Before further analyses, the data were normalized by the indi-
vidual baseline mean dominance durations of the opposite eye
(p) of each testing location to compare the effects of triggering
across conditions. The baseline mean dominance durations were
derived from the mean phase durations in the baseline blocks.
Then, we computed the event-related probabilities of the blind
spot eye dominance across times relative to the value of p from
the onset of the opposite eye dominance to 2p (Fig. 7). Because
the triggers were given when the blind spot eye was suppressed
for more than one third of p, the probability of a transition at the
beginning of each event was always zero. In contrast to the exper-
iment by Kang, Heeger, and Blake (2009), we did not trigger both
stimuli in turn but only triggered the stimulus in the blind spot
eye, as our purpose was to learn whether waves travelled over
the blind spot. Thus, as time elapsed from the onset, the probability
would rise to 0.5 at around p with some variance and would then
fluctuate irregularly around the value of 0.5 as the effect of the trig-
ger dissipated. If the trigger induced travelling waves of domi-
nance, the probability of reporting the blind spot eye stimulus

would be highest at and around the p, and the slope of the function
would be steeper than that of the baseline blocks. These trends are
reflected in the maximum value of the probability and the latency
of the maximum value.

The same eccentricity condition showed a clear effect of the
trigger (Fig. 8, right, light gray). The result of paired-sample t-tests
of the maximum value and its latency between the baseline block
and the triggered block was significant (Maximum: t(7) = 3.14,
p < .05; Latency: t(7) = 2.38, p < .05). This result indicates that riv-
alry alternations were being influenced by triggers presented with-
in the region outside the blind spot, consistent with the results of
Kang, Heeger, and Blake (2009). When there was a gap between the
trigger and the tracking region, however, the effect of the trigger
was not significant (Fig. 8 right, dark gray; Maximum: t(7) = 1.25,
p = .25; Latency: t(7) = .55, p = .60), implying that travelling waves
were not able to traverse a gap region the size of the blind spot.
Remarkably, the blind spot itself did not impair the progress of
travelling waves, as evidenced by the significant effect of the trig-
ger in the blind spot condition (Fig. 8 left, light gray). The maxi-
mum value of the triggered block was significantly higher and its
latency was shorter (Maximum: t(7) = 2.74, p < .05; Latency:
t(7) = 3.33, p < .05) than the baseline.

We also estimated the speed of the travelling wave. It was
18.15 ± 7.12 deg/s in the blind spot and 30.26 ± 20.07 deg/s in the
same eccentricity condition. It was 3.65 ± 0.54 deg/s when the
eccentricity was 1.8� in Wilson et al. (2001). This speed was almost
doubled when the eccentricity was doubled in their study. There-
fore, the speed measured in our study was similar to that in their
study because our eccentricity value was 15.79�. Although the esti-
mated speed in the blind spot condition appeared to be slower
than that of the same eccentricity condition, this difference was
not statistically significant (t(7) = .93, p = .38) on account of large
individual differences. This is also consistent with the finding that
the maximum value of the probability and the latency of the

Fig. 7. Mean probability of eight observers reporting the blind spot eye stimulus at
the blind spot (A) and at the same eccentricity outside the blind spot (B). The time
was normalized by the individual baseline mean phase duration (p), the mean
phase duration of the baseline conditions. The bin size was one sixth of the value of
p. The starting point of the time indicates the onset of reporting that observers
perceive the stimulus of the opposite eye. The onset of the trigger was one third of
p. The error bars indicate the s.e.m.
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maximum value did not differ between the blind spot and same
eccentricity conditions with the trigger (Maximum: t(7) = 2.09,
p = .08; Latency: t(7) = 1.53, p = .17).

The results of this experiment imply that perceptual waves can
indeed travel across the blind spot, and it is interesting to consider
the implication of this finding in the context of the neural model of
dominance wave propagation proposed by Wilson et al. (2001).
According to that model, two groups of neurons selectively respon-
sive to each rivaling stimulus exert reciprocal inhibition on one an-
other via inhibitory interneurons. Perceptual dominance occurs
when one group of neurons strongly inhibits the other group. Over
time inhibition strength exerted by the dominant neural group de-
creases because of adaptation of those neurons, and eventually the
other group will be released from inhibition and achieve tempo-
rary dominance. More importantly for interpretation of our results,
when the inhibition of interneurons between rivaling stimuli
spreads spatially as in our stimuli, this disinhibition will occur
recurrently within the retinotopic representation of an extended
rival target. This recurrent disinhibition generates a wave of state
transitions and, thus, the impression of one percept sweeping the
other out of awareness. Viewed within this framework, the ability
of a triggered wave to traverse the blind spot implies that the
filled-in surface within the blind spot carries neural signals under-
lying this wave-like spread of dominance.

5. General discussion

This study used surface filling and binocular rivalry to investi-
gate the characteristics of perceptual filling-in of the blind spot.

Results from Experiment 1 revealed that a pattern was able to fill
the blind spot more readily when the pattern’s contours were col-
linear as opposed to orthogonal (‘‘more readily’’ meaning that the
minimal length of the long axis of a pattern producing filling-in
could be shorter for the collinear contours compared to orthogonal
contours). Filling-in was also more effective when the patterns had
smaller difference in orientation. Thus, the orientation properties
of a pattern falling partly within the blind spot influence that pat-
tern’s ability to fill in the blind spot, in a manner reminiscent of
contour integration (Field, Hayes, & Hess, 1993) and amodal com-
pletion (Kellman & Shipley, 1991).

Experiment 2 measured the dynamics of binocular rivalry when
one portion of a rival pattern fell within the blind spot but none-
theless appeared continuous throughout the pattern. Compared
to the condition where the pattern was genuinely continuous,
the filled-in pattern altered the durations of suppression of that
pattern, resulting in fewer short-duration states and more long-
duration states. This pattern of results is consistent with Levelt’s
second proposition (Levelt, 1968), wherein variations in the stimu-
lus strength of a rival pattern alter its durations of suppression
(which is the same as saying those variations alter the durations
of dominance of the stimulus in the contralateral eye). Now, one
could argue that the findings of Experiments 2 do not arise because
the filled-in surface is weaker relative to the real surface but be-
cause the sensitivity of the area in the opposite eye corresponding
to the blind spot is higher than that of other regions at the same
eccentricity (Wolf & Gardiner, 1963). In line with this, several stud-
ies reporting differences between the filled-in surface at the blind
spot and the real surface also attributed those differences to the
opposite eye’s higher sensitivity in this region (Cumming & Friend,
1980; He & Davis, 2001; Maertens & Pollmann, 2007). However,
this explanation seems less likely when considering Levelt’s second
proposition (Levelt, 1968). If the stimulus presented to the region
corresponding to the other eye’s blind spot is more strongly repre-
sented than the stimulus of the same eccentricity due to the higher
sensitivity in this region, the distribution of dominance durations
should change in the blind spot eye, not in the opposite eye as in
Experiment 2. Thus based on Levelt’s proposition, it appears that
the higher sensitivity of the opposite eye in the corresponding re-
gion of the blind spot is not the main factor influencing the dynam-
ics of rivalry.

The reduced strength of the blind spot representation as com-
pared to the real surface observed in Experiment 2 is consistent
with the results of an electrophysiological study of macaque visual
cortex (Matsumoto & Komatsu, 2005). Even when a bar stimulus
was long enough to yield blind spot filling, the responses of the
neurons whose receptive fields overlapped the blind spot were
not as potent as those of neurons activated by a stimulus imaged
in the opposite eye at the retinal area corresponding to the other
eye’s blind spot.

Experiment 3 established that travelling waves of binocular riv-
alry dominance can propagate through the blind spot, carrying the
wave of dominance from one end of a rival stimulus to the other.
The same is not true, however, when a real gap (the size of the
blind spot) is situated within a rival stimulus imaged outside of
the blind spot. Evidently, then, the process responsible for filling-
in at the blind spot can also promote neural events supporting
travelling waves of dominance in rivalry.

Some previous studies of the blind spot have shown similarities
between filled-in surfaces and real surfaces, using measures such
as interocular transfer of motion aftereffects (Murakami, 1995)
and dominance durations during binocular rivalry (He & Davis,
2001; Tong & Engel, 2001). However, other studies have found dif-
ferences between them. For example, an adapting pattern falling
partially within the blind spot does not produce a tilt aftereffect
(Cumming & Friend, 1980) nor does it generate illusory contours

Fig. 8. Maximum probability of blind spot eye dominance (A) and its latency (B).
The latency of the maximum probability was normalized by the baseline mean
phase duration (p). The error bars indicate the s.e.m.
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(Maertens & Pollmann, 2007). In the present study, we observed
both similarities and differences between real and filled-in stimuli.
Specifically, Experiment 1 found that contour collinearity had
influence on filled-in stimuli, and Experiments 2 and 3 showed that
a filled-in surface can impact binocular rivalry and the spatio-tem-
poral spread of rivalry dominance. At the same time, Experiment 2
revealed that a filled-in pattern exhibited diminished strength in
terms of its emergence from interocular suppression. Why do those
similarities and differences occur, and can they be understood
within a unified theoretical framework? To answer those ques-
tions, we turn to neural models of blind spot filling-in.

Komatsu, Kinoshita, and Murakami (2000) proposed that when
the blind spot falls within the interior of an image of a large uni-
form surface, neurons in layer 6 of V1 with very large receptive
fields are activated, creating activity that mimics a complete,
filled-in surface. According to their model, there are three possible
sources of information to the blind spot representation in V1: affer-
ents from the lateral geniculate nucleus (LGN), horizontal connec-
tion within V1, and feedback from extrastriate cortex. Among those
three, the results of Experiment 1 suggest that contour information
within an area surrounding the blind spot is integrated by way of
long-range horizontal connections of the sort known to exist with-
in V1 (Crook, Engelmann, & Löwel, 2002; Gilbert & Wiesel, 1989).

For purposes of accounting for the results of Experiments 2 and
3, however, this model is incomplete for it ignores differential
influences from retinal areas in the eye opposite that of the blind
spot. This limitation in the model could be rectified by the addition
of long-range dichoptic horizontal cortical connections between
neurons near the blind spot and neurons in the opposite eye whose
receptive fields correspond to the blind spot region; indeed, just
such an idea has been proposed by Tripathy and Levi (1994). With
this change, the neural model of filling-in could account for the re-
sults of Experiments 2 and 3. This binocular interaction is also used
for explaining the mechanism of binocular rivalry (Freeman, 2005;
Lumer, 1998; Stollenwerk & Bode, 2003) and travelling waves
(Kang et al., 2011; Knapen, van Ee, & Blake, 2007; Wilson et al.,
2001), which we used in Experiments 2 and 3, respectively.

5.1. Conclusion

In summary, the current study investigated the properties of
filling-in at the blind spot by comparing these properties to those
associated with a real surface. The results suggest a common
mechanism as normal perception is shared, with the filled-in sur-
face playing a role in binocular rivalry but at a reduced strength.
Including the present study into the blind spot model will specify
the blind spot filling-in mechanism, especially in terms of binocu-
lar interactions.
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